牛客小白月赛37 I-加减 二分/双指针+前缀和

2 篇文章 0 订阅
1 篇文章 0 订阅

原题链接
题意:
小红拿到了一个长度为n的数组。她每次操作可以让某个数加 1 或者某个数减 1 。
小红最多能进行k次操作。她希望操作结束后,该数组出现次数最多的元素次数尽可能多。
你能求出这个最大的次数吗?

思路:
固定ai让左右的数往ai靠,然后二分区间长度或者双指针遍历区间,前缀和O1算区间贡献,不错的思维题。

二分

#include<bits/stdc++.h>
#define LL long long
#define INF INT64_MAX
#define MOD 998244353
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
typedef pair<int,int>pa;
const int N = 3e5+7;
LL a[N], sum[N], n, k, ans;
char s[N];
bool check(LL x){
    for(int l = 1;l+x-1 <= n;l++){
        LL r = l+x-1;
        LL mid = l+r>>1;
        if(a[mid]*(mid-l+1)-(sum[mid]-sum[l-1]) + sum[r]-sum[mid]-a[mid]*(r-mid) <= k){
            return true;
        }
    }
    return false;
}
int main(){
    int m, _;
    scanf("%lld%lld", &n, &k);
    for(int i = 1;i <= n;i++){
        scanf("%lld", &a[i]);
    }
    sort(a+1, a+1+n);
    for(int i = 1;i <= n;i++){
        sum[i] = sum[i-1]+a[i];
    }
    LL l = 1, r = n<<1;
    while(l<=r){
        LL mid = l+r>>1;
        if(check(mid)){
            ans = mid;
            l = l+1;
        }
        else r = mid-1;
    }
    printf("%lld\n", ans);
    return 0;
}

双指针

#include<bits/stdc++.h>
#define LL long long
#define INF INT64_MAX
#define MOD 998244353
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
typedef pair<int,int>pa;
const int N = 3e5+7;
LL a[N], sum[N], n, k, ans;
char s[N];
int main(){
    int m, _;
    scanf("%lld%lld", &n, &k);
    for(int i = 1;i <= n;i++){
        scanf("%lld", &a[i]);
    }
    sort(a+1, a+1+n);
    for(int i = 1;i <= n;i++){
        sum[i] = sum[i-1]+a[i];
    }
    LL l = 1, r = 2, ans = 1;
    while(l<=n && r<=n){
        LL mid = l+r>>1;
        if(a[mid]*(mid-l+1)-(sum[mid]-sum[l-1]) + sum[r]-sum[mid]-a[mid]*(r-mid) <= k){
            ans = max(ans, r-l+1);
            r++;
        }
        else l++;
    }
    printf("%lld\n", ans);
    return 0;
}

这是一个经典的动态规划问题,可以称为“最大子和”变种,但考虑了特殊的操作限制。我们可以将其转换为求解最优子结构的问题。假设我们有两个状态: 1. `dp[i]` 表示前 i 个元素经过若干次操作后的最大和; 2. `neg[i]` 表示前 i 个元素中有 n 个取反时的最小负和。 对于数组 `arr[0..2n-2]`,我们有以下状态转移方程: - 如果 `i` 没达到 n 的倍数,说明当前操作只能影响到前 `i` 个元素,因此 `dp[i] = max(dp[i-1], dp[i-n] + sum(arr[i-n+1:i+1]))`,其中 `sum(arr[x:y])` 计算 `x` 到 `y` 区间内元素的和。 - 如果 `i` 等于 `n`, `2n`, ..., `(k+1)n-2`,意味着可以取反整个长度为 `n` 的连续子数组,所以 `neg[i] = min(neg[i-n] - arr[i-n+1:i+1].sum(), 0)`,因为取反会使得这部分变为负数。 最终结果是 `dp[2n-1]` 和 `neg[2n-1]` 中较大的那个,因为取反操作也可以尽可能地让剩余未取反的部分保持正和。 以下是简单的Python实现: ```python def max_sum_after_operations(arr): n = len(arr) // 2 dp = [0] * (2 * n) neg = [0] * (2 * n) # 初始化基础情况 dp[0] = arr[0] for i in range(1, n): dp[i] = max(dp[i-1], arr[i]) neg[i] = max(-arr[i], neg[i-1]) for i in range(n, 2*n): dp[i] = max(dp[i-1], dp[i-n] + sum(arr[i-n:i+1])) neg[i] = min(neg[i-n] - sum(arr[i-n:i+1]), 0) return max(dp[-1], neg[-1]) # 示例 arr = [1, 2, -3, 4, -5, 6] print(max_sum_after_operations(arr)) # 结果会是最大的正和 ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值