数学の美妙世界
文章平均质量分 88
间宫羽咲sama
阴阳使徒于黑棺沉眠,无垢明灯于晦明绽放,在无月的天空下觉醒吧!
展开
-
矩阵分析与应用(一)——矩阵基础知识、广义逆
以前自学过一些矩阵分析,现在研究生再次学到这门课,倍感亲切。因为是上网课,相当于再自学一遍,顺便将自学笔记整理发出来。参考书目:张贤达《矩阵分析与应用》(第二版)本文讲得比较杂且浅,只介绍了概念和最基本的思路,隐去了许多技术细节。同时由于涉及了许多超越线性代数范围的知识,读者通常难以一次就看懂本文。但不用着急,本文是作为后续文章的参考资料集,用于方便后续回头查阅,许多内容读者读完后续文章自然会有更深的领悟,此时再回头看,或许可以将那些碎片化的知识点串到一起。下面是对整个《矩阵理论》的概述——原创 2022-09-09 14:57:08 · 1172 阅读 · 0 评论 -
迭代递推计算均值、方差的无偏估计(含C++实现)
文章目录前言数学推导C++代码实现前言对于一个序列而言,求均值和方差根据定义式是不难的,其时空复杂度均为 O(N)\mathcal{O}\left(N\right)O(N) 。但有的时候,我们的样本是一个一个给的,此时新来了一个样本,我们总不可能把原来的样本都捞出来再算一次均值、方差吧,那样时空复杂度都是 O(N)\mathcal{O}\left(N\right)O(N) 了。因此,我们需要一个递推的方式,假设我们已知前 nnn 个样本的均值和方差 μ^n,σ^n2\hat{\mu}_n, \hat{\原创 2022-05-15 22:46:05 · 2116 阅读 · 1 评论 -
类指数级数(指数积分函数的变体)数值计算算法的C++实现
文章目录前言HskEta函数HskKsi函数广义HskEta函数定义式主项分析余项分析前言由于毕设的数学推导中涉及了 ∑n=1∞xnn!×n\sum_{n=1}^{\infty}{\frac{x^n}{n!\times n}}∑n=1∞n!×nxn 和 ∑n=1∞xnn!×n2\sum_{n=1}^{\infty}{\frac{x^n}{n!\times n^2}}∑n=1∞n!×n2xn 这两个神奇的函数,其中 ∑n=1∞xnn!×n\sum_{n=1}^{\infty}{\frac{x^n}原创 2022-05-03 16:02:29 · 2504 阅读 · 0 评论 -
高斯误差函数erf的数值计算方法(C++实现)
HskErf函数前言由于毕设的数学推导中涉及了 erf\mathrm{erf}erf 函数,关于其他函数的渐近计算推导见链接类指数级数(指数积分函数的变体)数值计算算法的C++实现。反正闲得无聊,虽然知道这种函数肯定有现成的轮子了,然而我是情报弱者。再加上最后我的算法是要在 C++ 平台上进行实现的,不如自己造一手轮子。注意:因为我的场景只涉及 x⩾0x\geqslant0x⩾0 的情形,所以只针对这种情况进行了考虑。事实上,根据对称性 x<0x<0x<0 ,直接用 erf(x)原创 2022-05-03 18:49:53 · 5218 阅读 · 5 评论 -
X服从正态分布,cosX的均值、方差、n阶矩
文章目录前言零均值正态的n阶矩非均值正态前言做毕设时的一个中间定理时,刚好要对一个正态随机变量的 cosX\cos XcosX 的均值、方差进行估计。其概率密度函数并不好求,但意外地发现 nnn 阶矩好估计。想了下,这个问题还挺有实际价值的,特此记录一下,以便节省后人头发。零均值正态的n阶矩设 X∼N(0, σ2)X\sim \mathrm{N}\left( 0,\ \sigma ^2 \right)X∼N(0, σ2) ,令 U=cosXU=\cos XU=cosX , Y原创 2022-04-21 21:05:56 · 5899 阅读 · 4 评论 -
变分法中的欧拉方程的细致讲解&详细推导
文章目录前言0、泛函的概念1、变分学基本引理引理内容引理的理解与说明2、单方程单变量欧拉方程2.1、单方程单变量一次的欧拉方程的证明定理内容定理的理解与证明2.2、单方程单变量高次的欧拉方程的证明定理内容定理的理解与证明2.3、单方程单变量习题——最短距离线与最速降线最短距离线问题的变分求解最速降线问题的变分求解3、多方程单变量欧拉方程3.1、两方程单变量一次的欧拉方程3.2、多方程单变量高次的欧拉方程4、多方程多变量欧拉方程4.1、分部积分向高维的推广4.2、单方程两变量一次的欧拉方程定理内容定理的理解与原创 2021-08-01 21:17:03 · 5141 阅读 · 5 评论 -
从「广义斯托克斯公式」结合「外微分公式」导出「牛顿-莱布尼茨公式」、「格林公式」、「高斯公式」、「斯托克斯公式」
文章目录0、前言&引子0.1、本文要求的预备知识0.2、牛顿-莱布尼茨公式0.3、格林公式0.4、高斯公式0.5、斯托克斯公式0.6、广义斯托克斯公式(牛顿莱布尼茨公式的推广)1、记号说明1.1、求边界记号∂Ω的含义1.2、流形1.3、楔形积(dx∧dy)=-(dy∧dx)1.4、外微分记号dω的含义2、用「广义斯托克斯公式」推导「牛顿-莱布尼茨公式」、「格林公式」、「高斯公式」、「斯托克斯公式」2.1、牛顿-莱布尼茨公式2.2、格林公式&斯托克斯公式2.3、高斯公式3、总结0、前言&am原创 2021-08-01 13:45:38 · 3356 阅读 · 3 评论