电磁场公式大全

代码及其markdown源代码的百度云链接如下,请注意:里面有些公式可能由于笔者的疏漏有错误,请不要全部采信。本内容仅供学习交流使用,完全免费,因此也请不要用本内容进行任何收费活动,如转载请不要对本内容进行修改。全文共5w+字符,公式全手打,作者也挺辛苦的。以上君子协议,望大家遵守。时间仓促,内容如有错误,还望多多海涵。

链接:https://pan.baidu.com/s/1Wz4_KqqFDf1AppcATzBj1g
提取码:kj7c

电磁场期末复习索引
作者:まみやはさき(間宮羽咲)
文档版本:V3.141592653
Thu 18 12:00 Fri 19 12:00 Sat 20 12:00 Jun 21 12:00 Mon 22 12:00 Tue 23 做到第8讲ppt(版本:V3.141) 做到第13讲ppt(版本:V3.14159) 做完ppt(版本:V3.1415926) 修订/增添内容(版本:V3.141592653) 打算考一个高分(想桃子 任务进度 进度进程表
修复label的错误
更新到第8章ppt
新增公式推导超链接功能
更新到13章ppt
更新完ppt
修改大量错误
新增公式高亮
V3.14
V3.1415
V3.141592
V3.1415926
V3.141592653
章节
ppt
第1讲
第2讲
第3讲
第4讲
第5讲
第6讲
第7讲
第8讲
第9讲
第10讲
第11讲
第12讲
第13讲
第14讲
第15讲
第1章-矢量分析
第2章-静电场
第3章-恒定电场
第4章-恒定磁场
第5章-静态场边值
第6章-电磁感应
第7章-时变电磁场
第8章-平面电磁波
第9章-导行波
第10章-电磁辐射

超链接目录如下

第零章

常用公式定义

本章用于定义一些常用的方程及其简称,方程简称见右端的括号
∇ ⋅ D ⃗ = ρ (D) \nabla \cdot \boldsymbol{\vec{D}}=\rho\tag{D} D =ρ(D)

∇ ⋅ B ⃗ = 0 (B) \nabla \cdot \boldsymbol{\vec{B}}=0\tag{B} B =0(B)

∇ × E ⃗ = − ∂ B ⃗ ∂ t (E) \nabla \times \boldsymbol{\vec{E}}=-\frac{\partial \boldsymbol{\vec{B}}}{\partial t}\tag{E} ×E =tB (E)

∇ × H ⃗ = J ⃗ + ∂ D ⃗ ∂ t (H) \nabla \times \boldsymbol{\vec{H}}=\boldsymbol{\vec{J}}+\frac{\partial \boldsymbol{\vec{D}}}{\partial t}\tag{H} ×H =J +tD (H)

∮ S D ⃗ ⋅ d S ⃗ = ∫ V ρ ⋅ d V (ID) \oint_S{\boldsymbol{\vec{D}}\cdot \text{d}\boldsymbol{\vec{S}}=\int_V{\rho \cdot \text{d}V}}\tag{ID} SD dS =VρdV(ID)

∮ S B ⃗ ⋅ d S ⃗ = 0 (IB) \oint_S{\boldsymbol{\vec{B}}\cdot \text{d}\boldsymbol{\vec{S}}=0}\tag{IB} SB dS =0(IB)

∮ l E ⃗ ⋅ d l ⃗ = − ∫ S ∂ B ⃗ ∂ t ⋅ d S ⃗ + ∮ l ( v ⃗ × B ⃗ ) ⋅ d l ⃗ (IE) \oint_l{\boldsymbol{\vec{E}}\cdot \text{d}\boldsymbol{\vec{l}}}=-\int_S{\frac{\partial \boldsymbol{\vec{B}}}{\partial t}\cdot \text{d}\boldsymbol{\vec{S}}}+\oint_l{\begin{array}{c} \left( \boldsymbol{\vec{v}}\times \boldsymbol{\vec{B}} \right) \cdot \text{d}\boldsymbol{\vec{l}}\\\end{array}}\tag{IE} lE dl =StB dS +l(v ×B )dl (IE)

∮ l H ⃗ ⋅ d l ⃗ = ∫ S J ⃗ ⋅ d S ⃗ + ∫ S ∂ D ⃗ ∂ t ⋅ d S ⃗ (IH) \oint_l{\boldsymbol{\vec{H}}\cdot \text{d}\boldsymbol{\vec{l}}}=\int_S{\boldsymbol{\vec{J}}\cdot \text{d}\boldsymbol{\vec{S}}}+\int_S{\frac{\partial \boldsymbol{\vec{D}}}{\partial t}\cdot \text{d}\boldsymbol{\vec{S}}}\tag{IH} lH dl =SJ dS +StD dS (IH)

∇ ⋅ D ⃗ = ρ (WD) \nabla \cdot \boldsymbol{\vec{D}}=\rho\tag{WD} D =ρ(WD)

∇ ⋅ B ⃗ = 0 (WB) \nabla \cdot \boldsymbol{\vec{B}}=0\tag{WB} B =0(WB)

∇ × E ⃗ = − j ω B ⃗ (WE) \nabla \times \boldsymbol{\vec{E}}=-j\omega \boldsymbol{\vec{B}}\tag{WE} ×E =jωB (WE)

∇ × H ⃗ = J ⃗ + j ω D ⃗ (WH) \nabla \times \boldsymbol{\vec{H}}=\boldsymbol{\vec{J}}+j\omega \boldsymbol{\vec{D}}\tag{WH} ×H =J +jωD (WH)

∇ × ∇ × E ⃗ = ∇ ( ∇ ⋅ E ⃗ ) − ∇ 2 E ⃗ (NXX) \nabla \times \nabla \times \boldsymbol{\vec{E}}=\nabla \left( \nabla \cdot \boldsymbol{\vec{E}} \right) -\nabla ^2\boldsymbol{\vec{E}}\tag{NXX} ××E =(E )2E (NXX)

A ⃗ × ( B ⃗ × C ⃗ ) = B ⃗ ( A ⃗ ⋅ C ⃗ ) − C ⃗ ( A ⃗ ⋅ B ⃗ ) (VXX) \boldsymbol{\vec{A}}\times \left( \boldsymbol{\vec{B}}\times \boldsymbol{\vec{C}} \right) =\boldsymbol{\vec{B}}\left( \boldsymbol{\vec{A}}\cdot \boldsymbol{\vec{C}} \right) -\boldsymbol{\vec{C}}\left( \boldsymbol{\vec{A}}\cdot \boldsymbol{\vec{B}} \right)\tag{VXX} A ×(B ×C )=B (A C )C (A B )(VXX)

∇ ⋅ ( A ⃗ × B ⃗ ) = B ⃗ ( ∇ × A ⃗ ) − A ⃗ ( ∇ × B ⃗ ) (NDX) \nabla \cdot \left( \boldsymbol{\vec{A}}\times \boldsymbol{\vec{B}} \right) =\boldsymbol{\vec{B}}\left( \nabla \times \boldsymbol{\vec{A}} \right) -\boldsymbol{\vec{A}}\left( \nabla \times \boldsymbol{\vec{B}} \right)\tag{NDX} (A ×B )=B (×A )A (×B )(NDX)

本构方程不必言明即可直接应用:
D ⃗ = ε E ⃗ \boldsymbol{\vec{D}}=\varepsilon \boldsymbol{\vec{E}} D =εE

B ⃗ = μ H ⃗ \boldsymbol{\vec{B}}=\mu \boldsymbol{\vec{H}} B =μH

J ⃗ = σ E ⃗ \boldsymbol{\vec{J}}=\sigma \boldsymbol{\vec{E}} J =σE

第一章——坐标变换与哈密顿算子

1、坐标变换公式

{ r ⃗ = { x , y , z } r ⃗ = { ρ cos ⁡ φ , ρ sin ⁡ φ , z } r ⃗ = { r sin ⁡ θ cos ⁡ φ , r sin ⁡ θ sin ⁡ φ , r cos ⁡ θ } (1.1.1) \begin{cases} \boldsymbol{\vec{r}}=\left\{ x,y,z \right\}\\ \boldsymbol{\vec{r}}=\left\{ \rho \cos \varphi ,\rho \sin \varphi ,z \right\}\\ \boldsymbol{\vec{r}}=\left\{ r\sin \theta \cos \varphi ,r\sin \theta \sin \varphi ,r\cos \theta \right\}\\\end{cases}\tag{1.1.1} r ={x,y,z}r ={ρcosφ,ρsinφ,z}r ={rsinθcosφ,rsinθsinφ,rcosθ}(1.1.1)

式==(1.1.1)==对应元素相等,例如:
{ x = r sin ⁡  ⁣  θ cos ⁡  ⁣  φ y = r sin ⁡ θ sin ⁡ φ z = r cos ⁡ θ ⇒ { r = x 2 + y 2 + z 2 sin ⁡ θ = ρ r , cos ⁡ θ = z r sin ⁡ φ = y ρ , cos ⁡ φ = x ρ (1.1.2) \begin{cases} x=r\sin \!\:\theta \cos \!\:\varphi\\ y=r\sin \theta \sin \varphi\\ z=r\cos \theta\\\end{cases}\Rightarrow \begin{cases} r=\sqrt{x^2+y^2+z^2}\\ \sin \theta =\frac{\rho}{r},\cos \theta =\frac{z}{r}\\ \sin \varphi =\frac{y}{\rho},\cos \varphi =\frac{x}{\rho}\\\end{cases}\tag{1.1.2} x=rsinθcosφy=rsinθsinφz=rcosθr=x2+y2+z2 sinθ=rρ,cosθ=rzsinφ=ρy,cosφ=ρx(1.1.2)

{ x = ρ cos ⁡  ⁣  φ y = ρ sin ⁡ φ z = z ⇒ { ρ = x 2 + y 2 cos ⁡  ⁣  φ = x ρ , sin ⁡ φ = y ρ z = z (1.1.3) \begin{cases} x=\rho \cos \!\:\varphi\\ y=\rho \sin \varphi\\ z=z\\\end{cases}\Rightarrow \begin{cases} \rho =\sqrt{x^2+y^2}\\ \cos \!\:\varphi =\frac{x}{\rho},\sin \varphi =\frac{y}{\rho}\\ z=z\\\end{cases}\tag{1.1.3} x=ρcosφy=ρsinφz=zρ=x2+y2 cosφ=ρx,sinφ=ρyz=z(1.1.3)

{ ρ = r sin ⁡ θ φ = φ z = r cos ⁡ θ ⇒ { r = ρ 2 + z 2 sin ⁡ θ = ρ r , cos ⁡ θ = z r φ = φ (1.1.4) \begin{cases} \rho =r\sin \theta\\ \varphi =\varphi\\ z=r\cos \theta\\\end{cases}\Rightarrow \begin{cases} r=\sqrt{\rho ^2+z^2}\\ \sin \theta =\frac{\rho}{r},\cos \theta =\frac{z}{r}\\ \varphi =\varphi\\\end{cases}\tag{1.1.4} ρ=rsinθφ=φz=rcosθr=ρ2+z2 sinθ=rρ,cosθ=rzφ=φ(1.1.4)

并且给出坐标间的变换公式:
[ x ^ y ^ z ^ ] = [ sin ⁡  ⁣  θ cos ⁡  ⁣  φ cos ⁡  ⁣  θ cos ⁡  ⁣  φ − sin ⁡  ⁣  φ sin ⁡  ⁣  θ sin ⁡  ⁣  φ cos ⁡  ⁣  θ sin ⁡  ⁣  φ cos ⁡  ⁣  φ cos ⁡  ⁣  θ − sin ⁡  ⁣  θ 0 ] [ r ^ θ ^ φ ^ ] (1.1.5) \left[ \begin{array}{c} \boldsymbol{\hat{x}}\\ \boldsymbol{\hat{y}}\\ \boldsymbol{\hat{z}}\\\end{array} \right] =\left[ \begin{matrix} \sin \!\:\theta \cos \!\:\varphi& \cos \!\:\theta \cos \!\:\varphi& -\sin \!\:\varphi\\ \sin \!\:\theta \sin \!\:\varphi& \cos \!\:\theta \sin \!\:\varphi& \cos \!\:\varphi\\ \cos \!\:\theta& -\sin \!\:\theta& 0\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{r}}\\ \boldsymbol{\hat{\theta}}\\ \boldsymbol{\hat{\varphi}}\\\end{array} \right]\tag{1.1.5} x^y^z^=sinθcosφsinθsinφcosθcosθcosφcosθsinφsinθsinφcosφ0r^θ^φ^(1.1.5)

[ x ^ y ^ z ^ ] = [ cos ⁡  ⁣  φ − sin ⁡  ⁣  φ 0 sin ⁡  ⁣  φ cos ⁡  ⁣  φ 0 0 0 1 ] [ ρ ^ φ ^ z ^ ] (1.1.6) \left[ \begin{array}{c} \boldsymbol{\hat{x}}\\ \boldsymbol{\hat{y}}\\ \boldsymbol{\hat{z}}\\\end{array} \right] =\left[ \begin{matrix} \cos \!\:\varphi& -\sin \!\:\varphi& 0\\ \sin \!\:\varphi& \cos \!\:\varphi& 0\\ 0& 0& 1\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{\rho}}\\ \boldsymbol{\hat{\varphi}}\\ \boldsymbol{\hat{z}}\\\end{array} \right]\tag{1.1.6} x^y^z^=cosφsinφ0sinφcosφ0001ρ^φ^z^(1.1.6)

[ ρ ^ φ ^ z ^ ] = [ sin ⁡ θ cos ⁡ θ 0 0 0 1 cos ⁡ θ − sin ⁡ θ 0 ] [ r ^ θ ^ φ ^ ] (1.1.7) \left[ \begin{array}{c} \boldsymbol{\hat{\rho}}\\ \boldsymbol{\hat{\varphi}}\\ \boldsymbol{\hat{z}}\\\end{array} \right] =\left[ \begin{matrix} \sin \theta& \cos \theta& 0\\ 0& 0& 1\\ \cos \theta& -\sin \theta& 0\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{r}}\\ \boldsymbol{\hat{\theta}}\\ \boldsymbol{\hat{\varphi}}\\\end{array} \right]\tag{1.1.7} ρ^φ^z^=sinθ0cosθcosθ0sinθ010r^θ^φ^(1.1.7)

考虑到此处雅可比矩阵是正交矩阵,将它们转置过来,即可得到逆变换,考虑到我们希望矩阵里由新的基的元素表示,因此如此化简:
[ r ^ θ ^ φ ^ ] = 1 r ρ [ x ρ y ρ z ρ z x z y − ρ 2 − r y r x 0 ] [ x ^ y ^ z ^ ] (1.1.8) \left[ \begin{array}{c} \boldsymbol{\hat{r}}\\ \boldsymbol{\hat{\theta}}\\ \boldsymbol{\hat{\varphi}}\\\end{array} \right] =\frac{1}{r\rho}\left[ \begin{matrix} x\rho& y\rho& z\rho\\ zx& zy& -\rho ^2\\ -ry& rx& 0\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{x}}\\ \boldsymbol{\hat{y}}\\ \boldsymbol{\hat{z}}\\\end{array} \right]\tag{1.1.8} r^θ^φ^=rρ1xρzxryyρzyrxzρρ20x^y^z^(1.1.8)

[ ρ ^ φ ^ z ^ ] = 1 ρ [ x y 0 − y x 0 0 0 ρ ] [ x ^ y ^ z ^ ] (1.1.9) \left[ \begin{array}{c} \boldsymbol{\hat{\rho}}\\ \boldsymbol{\hat{\varphi}}\\ \boldsymbol{\hat{z}}\\\end{array} \right] =\frac{1}{\rho}\left[ \begin{matrix} x& y& 0\\ -y& x& 0\\ 0& 0& \rho\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{x}}\\ \boldsymbol{\hat{y}}\\ \boldsymbol{\hat{z}}\\\end{array} \right]\tag{1.1.9} ρ^φ^z^=ρ1xy0yx000ρx^y^z^(1.1.9)

[ r ^ θ ^ φ ^ ] = 1 r [ ρ 0 z z 0 − ρ 0 r 0 ] [ ρ ^ φ ^ z ^ ] (1.1.10) \left[ \begin{array}{c} \boldsymbol{\hat{r}}\\ \boldsymbol{\hat{\theta}}\\ \boldsymbol{\hat{\varphi}}\\\end{array} \right] =\frac{1}{r}\left[ \begin{matrix} \rho& 0& z\\ z& 0& -\rho\\ 0& r& 0\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{\rho}}\\ \boldsymbol{\hat{\varphi}}\\ \boldsymbol{\hat{z}}\\\end{array} \right]\tag{1.1.10} r^θ^φ^=r1ρz000rzρ0ρ^φ^z^(1.1.10)

2、哈密顿算子性质

∇ f = 1 h a ∂ f ∂ a a ^ + 1 h b ∂ f ∂ b b ^ + 1 h c ∂ f ∂ c c ^ (1.2.1) \nabla f=\frac{1}{h_a}\frac{\partial f}{\partial a}\boldsymbol{\hat{a}}+\frac{1}{h_b}\frac{\partial f}{\partial b}\boldsymbol{\hat{b}}+\frac{1}{h_c}\frac{\partial f}{\partial c}\boldsymbol{\hat{c}}\tag{1.2.1} f=ha1afa^+hb1bfb^+hc1cfc^(1.2.1)

∇ ⋅ G = 1 h a h b h c ( ∂ h b h c G 1 ∂ a + ∂ h c h a G 2 ∂ b + ∂ h a h b G 3 ∂ c ) (1.2.2) \nabla \cdot \boldsymbol{G}=\frac{1}{h_ah_bh_c}\left( \frac{\partial h_bh_cG_1}{\partial a}+\frac{\partial h_ch_aG_2}{\partial b}+\frac{\partial h_ah_bG_3}{\partial c} \right) \tag{1.2.2} G=hahbhc1(ahbhcG1+bhchaG2+chahbG3)(1.2.2)

∇ × G = 1 h a h b h c ∣ h a a ^ h b b ^ h c c ^ ∂ ∂ a ∂ ∂ b ∂ ∂ c ( h a G 1 ) ( h b G 2 ) ( h c G 3 ) ∣ (1.2.3) \nabla \times \boldsymbol{G}=\frac{1}{h_ah_bh_c}\left| \begin{matrix} h_a\boldsymbol{\hat{a}}& h_b\boldsymbol{\hat{b}}& h_c\boldsymbol{\hat{c}}\\ \frac{\partial}{\partial a}& \frac{\partial}{\partial b}& \frac{\partial}{\partial c}\\ \left( h_aG_1 \right)& \left( h_bG_2 \right)& \left( h_cG_3 \right)\\\end{matrix} \right|\tag{1.2.3} ×G=hahbhc1haa^a(haG1)hbb^b(hbG2)hcc^c(hcG3)(1.2.3)

关于==(1.2.4)==式,详见参考文献1

∇ 2 = 1 h a h b h c [ ∂ ∂ a ( h b h c h a ∂ ∂ a ) + ∂ ∂ b ( h c h a h b ∂ ∂ b ) + ∂ ∂ c ( h a h b h c ∂ ∂ c ) ]    (无论标量矢量) (1.2.4) \nabla ^2=\frac{1}{h_ah_{\begin{array}{c} b\\ \end{array}}h_c}\left[ \frac{\partial}{\partial a}\left( \frac{h_{\begin{array}{c} b\\ \end{array}}h_c}{h_a}\frac{\partial}{\partial a} \right) +\frac{\partial}{\partial b}\left( \frac{h_{\begin{array}{c} c\\ \end{array}}h_a}{h_b}\frac{\partial}{\partial b} \right) +\frac{\partial}{\partial c}\left( \frac{h_{\begin{array}{c} a\\ \end{array}}h_b}{h_c}\frac{\partial}{\partial c} \right) \right] \,\,\text{(无论标量矢量)}\tag{1.2.4} 2=hahbhc1[a(hahbhca)+b(hbhchab)+c(hchahbc)](无论标量矢量)(1.2.4)

∇ f = ∂ f ∂ n ^ e ^ n (1.2.5) \nabla f=\frac{\partial f}{\partial \hat{n}}\boldsymbol{\hat{e}}_n\tag{1.2.5} f=n^fe^n(1.2.5)

∇ × ∇ × E ⃗ = ∇ ( ∇ ⋅ E ⃗ ) − ∇ 2 E ⃗ (NXX) \colorbox{cyan}{$\nabla \times \nabla \times \boldsymbol{\vec{E}}=\nabla \left( \nabla \cdot \boldsymbol{\vec{E}} \right) -\nabla ^2\boldsymbol{\vec{E}}$}\tag{NXX} ××E =(E )2E (NXX)

3、各坐标系下哈密顿算子性质

{ ∇ f = ∂ f ∂ x x ^ + ∂ f ∂ y y ^ + ∂ f ∂ z z ^ ∇ f = ∂ f ∂ ρ ρ ^ + 1 ρ ∂ f ∂ φ φ ^ + ∂ f ∂ z z ^ ∇ f = ∂ f ∂ r r ^ + 1 r ∂ f ∂ θ θ ^ + 1 r sin ⁡ θ ∂ f ∂ φ φ ^ (1.3.1) \begin{cases} \nabla f =\frac{\partial f}{\partial x}\boldsymbol{\hat{x}}+\frac{\partial f}{\partial y}\boldsymbol{\hat{y}}+\frac{\partial f}{\partial z}\boldsymbol{\hat{z}}\\ \nabla f=\frac{\partial f}{\partial \rho}\boldsymbol{\hat{\rho}}+\frac{1}{\rho}\frac{\partial f}{\partial \varphi}\boldsymbol{\hat{\varphi}}+\frac{\partial f}{\partial z}\boldsymbol{\hat{z}}\\ \nabla f =\frac{\partial f}{\partial r}\boldsymbol{\hat{r}}+\frac{1}{r}\frac{\partial f}{\partial \theta}\boldsymbol{\hat{\theta}}+\frac{1}{r\sin \theta}\frac{\partial f}{\partial \varphi}\boldsymbol{\hat{\varphi}}\\\end{cases}\tag{1.3.1} f=xfx^+yfy^+zfz^f=ρfρ^+ρ1φfφ^+zfz^f=rfr^+r1θfθ^+rsinθ1φfφ^(1.3.1)

{ ∇ ⋅ G = ∂ G 1 ∂ x + ∂ G 2 ∂ y + ∂ G 3 ∂ z ∇ ⋅ G = 1 ρ ∂ ρ G 1 ∂ ρ + 1 ρ ∂ G 2 ∂ φ + ∂ G 3 ∂ z ∇ ⋅ G = 1 r 2 ∂ r 2 G 1 ∂ r + 1 r sin ⁡ θ ∂ sin ⁡ θ G 2 ∂ θ + 1 r sin ⁡ θ ∂ G 3 ∂ φ (1.3.2) \begin{cases} \nabla \cdot \boldsymbol{G} =\frac{\partial G_1}{\partial x}&+\frac{\partial G_2}{\partial y}&+\frac{\partial G_3}{\partial z}\\ \nabla \cdot \boldsymbol{G} =\frac{1}{\rho}\frac{\partial \rho G_1}{\partial \rho}&+\frac{1}{\rho}\frac{\partial G_2}{\partial \varphi}&+\frac{\partial G_3}{\partial z}\\ \nabla \cdot \boldsymbol{G}=\frac{1}{r^2}\frac{\partial r^2G_1}{\partial r}&+\frac{1}{r\sin \theta}\frac{\partial \sin \theta G_2}{\partial \theta}&+\frac{1}{r\sin \theta}\frac{\partial G_3}{\partial \varphi}\\\end{cases}\tag{1.3.2} G=xG1G=ρ1ρρG1G=r21rr2G1+yG2+ρ1φG2+rsinθ1θsinθG2+zG3+zG3+rsinθ1φG3(1.3.2)

{ ∇ × G = ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z ( G 1 ) ( G 2 ) ( G 3 ) ∣ ∇ × G = ∣ ρ ^ ρ φ ^ z ^ ∂ ∂ ρ ∂ ∂ φ ∂ ∂ z ( G 1 ) ( ρ G 2 ) ( G 3 ) ∣ ∇ × G = ∣ r ^ r θ ^ r sin ⁡ θ φ ^ ∂ ∂ r ∂ ∂ θ ∂ ∂ φ ( G 1 ) ( r G 2 ) ( r sin ⁡ θ G 3 ) ∣ (1.3.3) \begin{cases} \nabla \times \boldsymbol{G} =\left| \begin{matrix} \boldsymbol{\hat{x}}& \boldsymbol{\hat{y}}& \boldsymbol{\hat{z}}\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ \left( G_1 \right)& \left( G_2 \right)& \left( G_3 \right)\\\end{matrix} \right|\\ \nabla \times \boldsymbol{G}=\left| \begin{matrix} \boldsymbol{\hat{\rho}}& \rho \boldsymbol{\hat{\varphi}}& \boldsymbol{\hat{z}}\\ \frac{\partial}{\partial \rho}& \frac{\partial}{\partial \varphi}& \frac{\partial}{\partial z}\\ \left( G_1 \right)& \left( \rho G_2 \right)& \left( G_3 \right)\\\end{matrix} \right|\\ \nabla \times \boldsymbol{G}=\left| \begin{matrix} \boldsymbol{\hat{r}}& r\boldsymbol{\hat{\theta}}& r\sin \theta \boldsymbol{\hat{\varphi}}\\ \frac{\partial}{\partial r}& \frac{\partial}{\partial \theta}& \frac{\partial}{\partial \varphi}\\ \left( G_1 \right)& \left( rG_2 \right)& \left( r\sin \theta G_3 \right)\\\end{matrix} \right|\\\end{cases}\tag{1.3.3} ×G=x^x(G1)y^y(G2)z^z(G3)×G=ρ^ρ(G1)ρφ^φ(ρG2)z^z(G3)×G=r^r(G1)rθ^θ(rG2)rsinθφ^φ(rsinθG3)(1.3.3)

{ ∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 ∇ 2 f = 1 ρ ∂ ∂ ρ ( ρ ∂ f ∂ ρ ) + 1 ρ 2 ∂ 2 f ∂ φ 2 + ∂ 2 f ∂ z 2 ∇ 2 f = 1 r 2 ∂ ∂ r ( r 2 ∂ f ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ f ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 f ∂ φ 2 (1.3.4) \begin{cases} \nabla ^2f=\frac{\partial ^2f}{\partial x^2}+\frac{\partial ^2f}{\partial y^2}+\frac{\partial ^2f}{\partial z^2}\\ \nabla ^2f=\frac{1}{\rho}\frac{\partial}{\partial \rho}\left( \rho \frac{\partial f}{\partial \rho} \right) +\frac{1}{\rho ^2}\frac{\partial ^2f}{\partial \varphi ^2}+\frac{\partial ^2f}{\partial z^2}\\ \nabla ^2f=\frac{1}{r^2}\frac{\partial}{\partial r}\left( r^2\frac{\partial f}{\partial r} \right) +\frac{1}{r^2\sin \theta}\frac{\partial}{\partial \theta}\left( \sin \theta \frac{\partial f}{\partial \theta} \right) +\frac{1}{r^2\sin ^2\theta}\frac{\partial ^2f}{\partial \varphi ^2}\\ \end{cases}\tag{1.3.4} 2f=x22f+y22f+z22f2f=ρ1ρ(ρρf)+ρ21φ22f+z22f2f=r21r(r2rf)+r2sinθ1θ(sinθθf)+r2sin2θ1φ22f(1.3.4)

关于==(1.3.4)==式,矢量拉普拉斯算子与标量算子具有类似的特性,其中柱坐标采用文献公式(21)展开,但球坐标过长,所以保留了原矢量格式,详见参考文献1
{ ∇ 2 G ⃗ = ∂ 2 G ⃗ ∂ x 2 + ∂ 2 G ⃗ ∂ y 2 + ∂ 2 G ⃗ ∂ z 2 ∇ 2 G ⃗ = ρ ^ [ ∇ 2 G ρ − 1 ρ 2 G ρ − 2 ρ 2 ∂ G φ ∂ φ ] + φ ^ [ ∇ 2 G φ − 1 ρ 2 G φ + 2 ρ 2 ∂ G ρ ∂ φ ] + z ^ ∇ 2 G z ∇ 2 G ⃗ = 1 r 2 ∂ ∂ r ( r 2 ∂ G ⃗ ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ G ⃗ ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 G ⃗ ∂ φ 2 (1.3.5) \begin{cases} \nabla ^2\boldsymbol{\vec{G}}=\frac{\partial ^2\boldsymbol{\vec{G}}}{\partial x^2}+\frac{\partial ^2\boldsymbol{\vec{G}}}{\partial y^2}+\frac{\partial ^2\boldsymbol{\vec{G}}}{\partial z^2}\\ \nabla ^2\boldsymbol{\vec{G}}=\boldsymbol{\hat{\rho}}\left[ \nabla ^2G_{\rho}-\frac{1}{\rho ^2}G_{\rho}-\frac{2}{\rho ^2}\frac{\partial G_{\varphi}}{\partial \varphi} \right] +\boldsymbol{\hat{\varphi}}\left[ \nabla ^2G_{\varphi}-\frac{1}{\rho ^2}G_{\varphi}+\frac{2}{\rho ^2}\frac{\partial G_{\rho}}{\partial \varphi} \right] +\boldsymbol{\hat{z}}\nabla ^2G_z\\ \nabla ^2\boldsymbol{\vec{G}}=\frac{1}{r^2}\frac{\partial}{\partial r}\left( r^2\frac{\partial \boldsymbol{\vec{G}}}{\partial r} \right) +\frac{1}{r^2\sin \theta}\frac{\partial}{\partial \theta}\left( \sin \theta \frac{\partial \boldsymbol{\vec{G}}}{\partial \theta} \right) +\frac{1}{r^2\sin ^2\theta}\frac{\partial ^2\boldsymbol{\vec{G}}}{\partial \varphi ^2}\\ \end{cases}\tag{1.3.5} 2G =x22G +y22G +z22G 2G =ρ^[2Gρρ21Gρρ22φGφ]+φ^[2Gφρ21Gφ+ρ22φGρ]+z^2Gz2G =r21r(r2rG )+r2sinθ1θ(sinθθG )+r2sin2θ1φ22G (1.3.5)

第二章——位函数与矢量方程

1、位函数

矢量磁位函数+动态电位

其中==(2.1.3)==式推导见<跳转到推导1>

B ⃗ = ∇ × A ⃗ (2.1.1) \boldsymbol{\vec{B}}=\nabla \times \boldsymbol{\vec{A}}\tag{2.1.1} B =×A (2.1.1)

E ⃗ = − ∇ U − ∂ A ⃗ ∂ t (2.1.2) \boldsymbol{\vec{E}}=-\nabla U-\frac{\partial \boldsymbol{\vec{A}}}{\partial t}\tag{2.1.2} E =UtA (2.1.2)

∇ ⋅ A ⃗ = − μ ε ∂ U ∂ t (2.1.3) \colorbox{cyan}{$\nabla \cdot \boldsymbol{\vec{A}}=-\mu \varepsilon \frac{\partial U}{\partial t}$}\tag{2.1.3} A =μεtU(2.1.3)

对于无电流区域( ∇ × H ⃗ = 0 \nabla\times\boldsymbol{\vec H}=0 ×H =0),标可以定义量磁位
H ⃗ = − ∇ U m (2.1.4) \boldsymbol{\vec{H}}=-\nabla U_m\tag{2.1.4} H =Um(2.1.4)

2、矢量方程

达朗贝尔方程
∇ 2 A ⃗ − μ ε ∂ 2 A ⃗ ∂ t 2 = − μ J ⃗ (2.2.1) \nabla ^2\boldsymbol{\vec{A}}-\mu \varepsilon \frac{\partial ^2\boldsymbol{\vec{A}}}{\partial t^2}=-\mu \boldsymbol{\vec{J}}\tag{2.2.1} 2A μεt22A =μJ (2.2.1)

∇ 2 U − μ ε ∂ 2 U ∂ t 2 = − ρ ε (2.2.2) \nabla ^2U-\mu \varepsilon \frac{\partial ^2U}{\partial t^2}=-\frac{\rho}{\varepsilon}\tag{2.2.2} 2Uμεt22U=ερ(2.2.2)

k 2 = ω 2 μ ε k^2=\omega^2\mu\varepsilon k2=ω2με
∇ 2 A ⃗ + k 2 A ⃗ = − μ J ⃗ (PPA) \colorbox{cyan}{$\nabla ^2\boldsymbol{\vec{A}}+k^2 \boldsymbol{\vec{A}}=-\mu \boldsymbol{\vec{J}}$}\tag{PPA} 2A +k2A =μJ (PPA)

∇ 2 U + k 2 U = − ρ ε (PPU) \colorbox{cyan}{$\nabla ^2U+k^2 U=-\frac{\rho}{\varepsilon}$}\tag{PPU} 2U+k2U=ερ(PPU)

亥姆霍兹方程
∇ 2 E ⃗ = μ σ ∂ E ⃗ ∂ t + μ ε ∂ 2 E ⃗ ∂ t 2 (2.2.3) \nabla ^2\boldsymbol{\vec{E}}=\mu \sigma \frac{\partial \boldsymbol{\vec{E}}}{\partial t}+\mu \varepsilon \frac{\partial ^2\boldsymbol{\vec{E}}}{\partial t^2}\tag{2.2.3} 2E =μσtE +μεt22E (2.2.3)

∇ 2 H ⃗ = μ σ ∂ H ⃗ ∂ t + μ ε ∂ 2 H ⃗ ∂ t 2 (2.2.4) \nabla ^2\boldsymbol{\vec{H}}=\mu \sigma \frac{\partial \boldsymbol{\vec{H}}}{\partial t}+\mu \varepsilon \frac{\partial ^2\boldsymbol{\vec{H}}}{\partial t^2}\tag{2.2.4} 2H =μσtH +μεt22H (2.2.4)

若区域内没有电荷( ρ = 0 \rho=0 ρ=0),设 k 2 = ω 2 μ ε − j ω μ σ k^2=\omega ^2\mu \varepsilon -j\omega \mu \sigma k2=ω2μεjωμσ

其中==(PPE)==式推导见跳转到推导2

∇ 2 E ⃗ + k 2 E ⃗ = 0 (PPE) \colorbox{cyan}{$\nabla ^2\boldsymbol{\vec{E}}+k^2\boldsymbol{\vec{E}}=0$}\tag{PPE} 2E +k2E =0(PPE)

∇ 2 H ⃗ + k 2 H ⃗ = 0 (PPH) \colorbox{cyan}{$\nabla ^2\boldsymbol{\vec{H}}+k^2\boldsymbol{\vec{H}}=0$}\tag{PPH} 2H +k2H =0(PPH)

第三章——边界条件方程

1、边界条件方程

{ n ^ × E ⃗ = 0 E t = 0 { n ^ ⋅ D ⃗ = ρ S D n = ρ S { n ^ ⋅ B ⃗ = 0 B n = 0 { n ^ × H ⃗ = J ⃗ S H t =    J S (3.1.1) \left\{ \begin{array}{r} \boldsymbol{\hat{n}}\times \boldsymbol{\vec{E}}=0\\ E_t=0\\ \end{array} \right. \left\{ \begin{array}{r} \boldsymbol{\hat{n}}\cdot \boldsymbol{\vec{D}}=\rho _S\\ D_n=\rho _S\\ \end{array} \right. \left\{ \begin{array}{r} \boldsymbol{\hat{n}}\cdot \boldsymbol{\vec{B}}=0\\ B_n=0\\ \end{array} \right. \left\{ \begin{array}{r} \boldsymbol{\hat{n}}\times \boldsymbol{\vec{H}}=\boldsymbol{\vec{J}}_S\\ H_t=\,\,J_S\\ \end{array} \right. \tag{3.1.1} {n^×E =0Et=0{n^D =ρSDn=ρS{n^B =0Bn=0{n^×H =J SHt=JS(3.1.1)

因此:

  1. 理想导体外侧的电场E必垂直于导体表面,且KaTeX parse error: Expected '}', got 'EOF' at end of input: …colorbox{cyan}{D_n=\rho _SKaTeX parse error: Expected 'EOF', got '}' at position 1: }̲

  2. 理想导体外侧的磁场H必平行于导体表面,且KaTeX parse error: Expected '}', got 'EOF' at end of input: …colorbox{cyan}{H_t=J_SKaTeX parse error: Expected 'EOF', got '}' at position 1: }̲

第四章——静电场

1、对称/非对称场结论

有限/无限长直导线
{ E /  ⁣ / = λ 4 π ε a ( sin ⁡ θ 2 − sin ⁡ θ 1 ) E ⊥ = λ 4 π ε a ( cos ⁡ θ 1 − cos ⁡ θ 2 ) \begin{cases} E_{/\!/}=\frac{\lambda}{4\pi \varepsilon a}\left( \sin \theta _2-\sin \theta _1 \right)\\ E_{\bot}=\frac{\lambda}{4\pi \varepsilon a}\left( \cos \theta _1-\cos \theta _2 \right)\\ \end{cases} {E//=4πεaλ(sinθ2sinθ1)E=4πεaλ(cosθ1cosθ2)

{ E ⃗ r → ∞ = λ 2 π ε r r ^ U = ln ⁡ r (4.1.1) \begin{cases} \displaystyle\colorbox{cyan}{$\boldsymbol{\vec{E}}_{r\to \infty}=\frac{\lambda}{2\pi \varepsilon r}\boldsymbol{\hat{r}}$}\\ \displaystyle U=\ln r\\\end{cases}\tag{4.1.1} E r=2πεrλr^U=lnr(4.1.1)

有限/无限大圆盘
E ⃗ = λ 2 ε ( 1 − x R 2 + x 2 ) x ^ \boldsymbol{\vec{E}}=\frac{\lambda}{2\varepsilon }\left( 1-\frac{x}{\sqrt{R^2+x^2}} \right)\boldsymbol{\hat{x}} E =2ελ(1R2+x2 x)x^

E ⃗ r → ∞ = λ 2 ε x ^ (4.1.2) \colorbox{cyan}{$\boldsymbol{\vec{E}}_{r\to \infty}=\frac{\lambda}{2\varepsilon }\boldsymbol{\hat{x}}$}\tag{4.1.2} E r=2ελx^(4.1.2)

对称均匀球
{ E ⃗ = { q r 4 π ε R 3 r ^ , r < R q 4 π ε r 2 , r > R U = { ( 3 q 8 π ε R − q r 2 8 π ε 0 R 3 ) r ^ , r < R q 4 π ε r , r > R (4.1.3) \begin{cases} \boldsymbol{\vec{E}}=\begin{cases} \displaystyle\frac{qr}{4\pi \varepsilon R^3}\boldsymbol{\hat{r}}&,r<R\\ \displaystyle\colorbox{cyan}{$\frac{q}{4\pi \varepsilon r^2}$}&,r>R\\\end{cases}\\ U=\begin{cases} \displaystyle\left(\frac{3q}{8\pi \varepsilon R}-\frac{qr^2}{8\pi \varepsilon _0R^3}\right)\boldsymbol{\hat{r}}&,r<R\\ \displaystyle\frac{q}{4\pi \varepsilon r}&,r>R\\\end{cases}\\\end{cases}\tag{4.1.3} E =4πεR3qrr^4πεr2q,r<R,r>RU=(8πεR3q8πε0R3qr2)r^4πεrq,r<R,r>R(4.1.3)
半径R的圆环中垂线
{ E ⃗ = q x 4 π ε ( x 2 + R 2 ) 3 2 x ^ U = q 4 π ε ( x 2 + R 2 ) 1 2 (4.1.4) \begin{cases} \displaystyle \colorbox{cyan}{$\boldsymbol{\vec{E}}=\frac{qx}{4\pi \varepsilon \left( x^2+R^2 \right) ^{\frac{3}{2}}}\boldsymbol{\hat{x}}$}\\ \displaystyle U=\frac{q}{4\pi \varepsilon \left( x^2+R^2 \right) ^{\frac{1}{2}}}\\\end{cases}\tag{4.1.4} E =4πε(x2+R2)23qxx^U=4πε(x2+R2)21q(4.1.4)

2、电偶极子

电偶极距
p ⃗ = Q l ⃗ (4.2.1) \boldsymbol{\vec{p}}=Q\boldsymbol{\vec{l}}\tag{4.2.1} p =Ql (4.2.1)

U = p ⃗ ⋅ r ⃗ 4 π ε r 3 = p cos ⁡ θ 4 π ε r 2 (4.2.2) \colorbox{cyan}{$U$}=\frac{\boldsymbol{\vec{p}}\cdot \boldsymbol{\vec{r}}}{4\pi \varepsilon r^3}=\colorbox{cyan}{$\frac{p\cos \theta}{4\pi \varepsilon r^2}$}\tag{4.2.2} U=4πεr3p r =4πεr2pcosθ(4.2.2)

E ⃗ = − ∇ U = − ( r ^ ∂ U ∂ r + θ ^ 1 r ∂ U ∂ θ ) = p 4 π ε r 3 ( r ^ 2 cos ⁡ θ + θ ^ sin ⁡ θ ) (4.2.3) \colorbox{cyan}{$\boldsymbol{\vec{E}}$}=-\nabla U=-\left( \boldsymbol{\hat{r}}\frac{\partial U}{\partial r}+\boldsymbol{\hat{\theta}}\frac{1}{r}\frac{\partial U}{\partial \theta} \right) =\colorbox{cyan}{$\frac{p}{4\pi \varepsilon r^3}\left( \boldsymbol{\hat{r}}2\cos \theta +\boldsymbol{\hat{\theta}}\sin \theta \right)$}\tag{4.2.3} E =U=(r^rU+θ^r1θU)=4πεr3p(r^2cosθ+θ^sinθ)(4.2.3)

电转矩
M ⃗ = p ⃗ × E ⃗ (4.2.4) \boldsymbol{\vec{M}}=\boldsymbol{\vec{p}}\times \boldsymbol{\vec{E}}\tag{4.2.4} M =p ×E (4.2.4)

3、电极化

体极化电荷
ρ p ( V ) = − ∇ ⋅ P ⃗ (4.3.1) \rho _{p\left( V \right)}=-\nabla \cdot \boldsymbol{\vec{P}}\tag{4.3.1} ρp(V)=P (4.3.1)
面极化电荷(其中 n ^ \boldsymbol{\hat{n}} n^为自己指向外面)
ρ p ( S ) = n ^ ⋅ P ⃗ (4.3.2) \rho _{p\left( S \right)}=\boldsymbol{\hat{n}}\cdot \boldsymbol{\vec{P}}\tag{4.3.2} ρp(S)=n^P (4.3.2)
D、E、P关系
P ⃗ = χ e ε 0 E ⃗ D ⃗ = ε 0 E ⃗ + P ⃗ ε r = 1 + χ e } ⇒ P ⃗ = ε r − 1 ε r D ⃗ (4.3.3) \left.\begin{array}{l}\boldsymbol{\vec{P}}=\chi _e\varepsilon _0\boldsymbol{\vec{E}}\\\boldsymbol{\vec{D}}=\varepsilon_0\boldsymbol{\vec{E}}+\boldsymbol{\vec{P}}\\\varepsilon _r=1+\chi _e\end{array}\right\}\Rightarrow \boldsymbol{\vec{P}}=\frac{\varepsilon _r-1}{\varepsilon _r}\boldsymbol{\vec{D}}\tag{4.3.3} P =χeε0E D =ε0E +P εr=1+χeP =εrεr1D (4.3.3)
极化电荷与原场关系
ρ p = ( 1 − ε r ε r ) ρ + D ⃗ ⋅ ∇ ( 1 ε r ) = ε r = const ( 1 − ε r ε r ) ρ (4.3.4) \colorbox{cyan}{$\rho _p$}=\left( \frac{1-\varepsilon _r}{\varepsilon _r} \right) \rho +\boldsymbol{\vec{D}}\cdot \nabla \left( \frac{1}{\varepsilon _r} \right) \xlongequal{\varepsilon _r=\text{const}}\colorbox{cyan}{$\left( \frac{1-\varepsilon _r}{\varepsilon _r} \right) \rho$}\tag{4.3.4} ρp=(εr1εr)ρ+D (εr1)εr=const (εr1εr)ρ(4.3.4)

4、静电场的哈密顿算符/边界方程

边界方程

D的法向分量(方向为2指向1)
n ^ ⋅ ( D ⃗ 1 − D ⃗ 2 ) = ρ S (4.4.1) \boldsymbol{\hat{n}}\cdot \left( \boldsymbol{\vec{D}}_1-\boldsymbol{\vec{D}}_2 \right) =\rho _S\tag{4.4.1} n^(D 1D 2)=ρS(4.4.1)
E的切向分量为0
n ^ × ( E ⃗ 1 − E ⃗ 2 ) = 0 (4.4.2) \boldsymbol{\hat{n}}\times \left( \boldsymbol{\vec{E}}_1-\boldsymbol{\vec{E}}_2 \right) =0\tag{4.4.2} n^×(E 1E 2)=0(4.4.2)
光学性质(假设边界无自由电荷

如果2区是理想导体,那么1区电场夹角近似于0度,即与表面垂直,故分界面处处等势。
D 1 cos ⁡ θ 1 = D 2 cos ⁡ θ 2 E 1 sin ⁡ θ 1 = E 2 sin ⁡ θ 2 D = ε E } ⇒ tan ⁡ θ 1 tan ⁡ θ 2 = ε 1 ε 2 (4.4.3) \left.\begin{matrix}D_1\cos \theta _1=D_2\cos \theta _2\\E_1\sin \theta _1=E_2\sin \theta _2\\D=\varepsilon E\end{matrix}\right\}\Rightarrow\colorbox{cyan}{$\frac{\tan \theta _1}{\tan \theta _2}=\frac{\varepsilon _1}{\varepsilon _2}$}\tag{4.4.3} D1cosθ1=D2cosθ2E1sinθ1=E2sinθ2D=εEtanθ2tanθ1=ε2ε1(4.4.3)
电位方程
{ U 1 = U 2 ε 1 ∂ U 1 ∂ n = ε 2 ∂ U 2 ∂ n (4.4.4) \begin{cases} U_1=U_2\\ \colorbox{cyan}{$\varepsilon _1\frac{\partial U_1}{\partial n}=\varepsilon _2\frac{\partial U_2}{\partial n}$}\\ \end{cases}\tag{4.4.4} {U1=U2ε1nU1=ε2nU2(4.4.4)

由**(PPU)**可得泊松方程
∇ 2 U = − ρ ε (4.4.5) \nabla ^2U=-\frac{\rho}{\varepsilon }\tag{4.4.5} 2U=ερ(4.4.5)

ρ = ρ s + ρ p { ∇ ⋅ D ⃗ = ρ s ∇ ⋅ E ⃗ = ρ ε 0 ∇ ⋅ P ⃗ = − ρ p ∇ ⋅ J ⃗ = − ∂ ρ ∂ t (4.4.6) \rho =\rho _s+\rho _p\begin{cases} \nabla \cdot \boldsymbol{\vec{D}}=\rho _s\\ \displaystyle \nabla \cdot \boldsymbol{\vec{E}}=\frac{\rho}{\varepsilon_0 }\\ \nabla \cdot \boldsymbol{\vec{P}}=-\rho _p\\ \displaystyle \nabla \cdot \boldsymbol{\vec{J}}=-\frac{\partial \rho}{\partial t}\end{cases}\tag{4.4.6} ρ=ρs+ρpD =ρsE =ε0ρP =ρpJ =tρ(4.4.6)

5、电场能量/电容

电场能量
w e = 1 2 D ⃗ ⋅ E ⃗ (4.5.1) \colorbox{cyan}{$w_e=\frac{1}{2}\boldsymbol{\vec{D}}\cdot \boldsymbol{\vec{E}}$}\tag{4.5.1} we=21D E (4.5.1)

W e = 1 2 ∫ R ∞ D ⃗ ⋅ E ⃗   d V (4.5.2) W_e=\frac{1}{2}\int_{R_{\infty}}{\boldsymbol{\vec{D}}\cdot \boldsymbol{\vec{E}}\,\text{d}V}\tag{4.5.2} We=21RD E dV(4.5.2)

电容器
C = Q V = Q ∫ E ⋅ d l (4.5.3) C=\frac{Q}{V}=\frac{Q}{\int E\cdot dl}\tag{4.5.3} C=VQ=EdlQ(4.5.3)
平行电容器
E ⃗ = r ^ Q ε 0 ε r , C = ε 0 ε r S d (4.5.4) \boldsymbol{\vec{E}}=\boldsymbol{\hat{r}}\frac{Q}{\varepsilon _0\varepsilon _r},\colorbox{cyan}{$C=\frac{\varepsilon _0\varepsilon _rS}{d}$}\tag{4.5.4} E =r^ε0εrQ,C=dε0εrS(4.5.4)
圆柱电容器
E ⃗ = r ^ Q / L 2 π ε 0 ε r r , C = 2 π ε 0 ε r L ln ⁡ ( R 2 / R 1 ) (4.5.5) \boldsymbol{\vec{E}}=\boldsymbol{\hat{r}}\frac{Q/L}{2\pi \varepsilon _0\varepsilon _rr},\colorbox{cyan}{$C=\frac{2\pi \varepsilon _0\varepsilon _rL}{\ln \left( R_2/R_1 \right)}$}\tag{4.5.5} E =r^2πε0εrrQ/L,C=ln(R2/R1)2πε0εrL(4.5.5)
球形电容器
E ⃗ = r ^ Q 4 π ε 0 ε r r 2 , C = 4 π ε 0 ε r 1 / R 1 − 1 / R 2 (4.5.6) \boldsymbol{\vec{E}}=\boldsymbol{\hat{r}}\frac{Q}{4\pi \varepsilon _0\varepsilon _rr^2},\colorbox{cyan}{$C=\frac{4\pi \varepsilon _0\varepsilon _r}{1/R_1-1/R_2}$}\tag{4.5.6} E =r^4πε0εrr2Q,C=1/R11/R24πε0εr(4.5.6)
孤立导体球
E ⃗ = r ^ Q 4 π ε r 2 , C = 4 π ε R (4.5.7) \boldsymbol{\vec{E}}=\boldsymbol{\hat{r}}\frac{Q}{4\pi \varepsilon r^2},\colorbox{cyan}{$C=4\pi \varepsilon R$}\tag{4.5.7} E =r^4πεr2Q,C=4πεR(4.5.7)

6、n个导体平面相对

共要列2n个方程——

不接地平面

  1. 1个方程导体内部场强为0

  2. n-1个两道题间高斯面通量为0(即等量异号)

  3. n个电荷守恒

接地平面

接地部分电荷守恒方程变易为接地端电荷为0

第五章——恒定电流场

1、电导、电阻、电功率

定义电导率
σ = N e 2 τ 2 m 0 (5.1.1) \sigma =\frac{Ne^2\tau}{2m_0}\tag{5.1.1} σ=2m0Ne2τ(5.1.1)

J ⃗ = ρ m v ⃗ ρ m = N e v ⃗ = e E ⃗ m 0 τ } J ⃗ = N e 2 τ 2 m 0 E ⃗ = σ E ⃗ (5.1.2) \left. \begin{array}{r} \boldsymbol{\vec{J}}=\rho _m\boldsymbol{\vec{v}}\\ \rho _m=Ne\\ \boldsymbol{\vec{v}}=\frac{e\boldsymbol{\vec{E}}}{m_0}\tau\\ \end{array} \right\} \colorbox{cyan}{$\boldsymbol{\vec{J}}$}=\frac{Ne^2\tau}{2m_0}\boldsymbol{\vec{E}}=\colorbox{cyan}{$\sigma \boldsymbol{\vec{E}}$}\tag{5.1.2} J =ρmv ρm=Nev =m0eE τJ =2m0Ne2τE =σE (5.1.2)

低频欧姆定律
R = ∫ l d R = ∫ l d l σ S (5.1.3) \colorbox{cyan}{$R$}=\int_l{\text{d}R}=\colorbox{cyan}{$\int_l{\frac{\text{d}l}{\sigma S}}$}\tag{5.1.3} R=ldR=lσSdl(5.1.3)
焦耳定律
p = J ⃗ ⋅ E ⃗ (5.1.4) \colorbox{cyan}{$p=\boldsymbol{\vec{J}}\cdot \boldsymbol{\vec{E}}$}\tag{5.1.4} p=J E (5.1.4)

P = ∫ V J ⃗ ⋅ E ⃗ ⋅ d V = ∫ S J ⃗ ⋅ d S ⃗ ∫ l E ⃗ ⋅ d l ⃗ = I U (5.1.5) P=\int_V{\boldsymbol{\vec{J}}\cdot \boldsymbol{\vec{E}}\cdot \text{d}V}=\int_S{\boldsymbol{\vec{J}}\cdot \text{d}\boldsymbol{\vec{S}}}\int_l{\boldsymbol{\vec{E}}\cdot \text{d}\boldsymbol{\vec{l}}}=IU\tag{5.1.5} P=VJ E dV=SJ dS lE dl =IU(5.1.5)

2、JDεσ对偶/恒定电流场边界条件

无外源恒流场 J ⃗ ↔ D ⃗ \boldsymbol{\vec{J}}\leftrightarrow \boldsymbol{\vec{D}} J D 、无电荷静电场 σ ↔ ε \sigma\leftrightarrow \varepsilon σε具有对偶关系

静电场(ρ=0)EUDQε
恒定电场(电源外)EUJIσ

假设电场是恒定电流场,此时有: n ^ ⋅ ( J ⃗ 1 − J ⃗ 2 ) = 0 \boldsymbol{\hat{n}}\cdot \left( \boldsymbol{\vec{J}}_1-\boldsymbol{\vec{J}}_2 \right) =0 n^(J 1J 2)=0 n ^ × ( E ⃗ 1 − E ⃗ 2 ) = 0 \boldsymbol{\hat{n}}\times \left( \boldsymbol{\vec{E}}_1-\boldsymbol{\vec{E}}_2 \right) =0 n^×(E 1E 2)=0

J 1 cos ⁡ θ 1 = J 2 cos ⁡ θ 2 E 1 sin ⁡ θ 1 = E 2 sin ⁡ θ 2 J = σ E } ⇒ tan ⁡ θ 1 tan ⁡ θ 2 = σ 1 σ 2 (5.2.1) \left.\begin{matrix}J_1\cos \theta _1=J_2\cos \theta _2\\E_1\sin \theta _1=E_2\sin \theta _2\\J=\sigma E\end{matrix}\right\}\Rightarrow\colorbox{cyan}{$\frac{\tan \theta _1}{\tan \theta _2}=\frac{\sigma _1}{\sigma _2}$}\tag{5.2.1} J1cosθ1=J2cosθ2E1sinθ1=E2sinθ2J=σEtanθ2tanθ1=σ2σ1(5.2.1)
如果2区是理想导体,那么1区电场夹角近似于0度,即与表面垂直,故分界面处处等势。
σ 1 ∂ U 1 ∂ n = σ 2 ∂ U 2 ∂ n (5.2.2) \sigma _1\frac{\partial U_1}{\partial n}=\sigma _2\frac{\partial U_2}{\partial n}\tag{5.2.2} σ1nU1=σ2nU2(5.2.2)

R C = ε σ ⇔ C G = ε σ (5.2.3) RC=\frac{\varepsilon}{\sigma}\Leftrightarrow \colorbox{cyan}{$\frac{C}{G}=\frac{\varepsilon}{\sigma}$}\tag{5.2.3} RC=σεGC=σε(5.2.3)

第六章——恒定磁场

1、对称/非对称场结论

F ⃗ = q ( E ⃗ + v ⃗ × B ⃗ ) (6.1.1) \boldsymbol{\vec{F}}=q\left( \boldsymbol{\vec{E}}+\boldsymbol{\vec{v}}\times \boldsymbol{\vec{B}} \right)\tag{6.1.1} F =q(E +v ×B )(6.1.1)

I d l ⃗ = J ⃗ d S d l = ρ v ⃗ d V = d Q v ⃗ (6.1.2) I\text{d}\boldsymbol{\vec{l}}=\boldsymbol{\vec{J}}\text{d}S\text{d}l=\rho \boldsymbol{\vec{v}}\text{d}V=\text{d}Q\boldsymbol{\vec{v}}\tag{6.1.2} Idl =J dSdl=ρv dV=dQv (6.1.2)

d B ⃗ = μ 4 π I d l ⃗ × R ^ R 2 = n ^ μ I sin ⁡ θ 4 π r 2 d l = μ 4 π J ⃗ × R ^ R 2 d V (6.1.3) \colorbox{cyan}{$\text{d}\boldsymbol{\vec{B}}$}=\frac{\mu }{4\pi}\frac{I\text{d}\boldsymbol{\vec{l}}\times \boldsymbol{\hat{R}}}{R^2}=\colorbox{cyan}{$\boldsymbol{\hat{n}}\frac{\mu I\sin \theta}{4\pi r^2}\text{d}l$}=\frac{\mu }{4\pi}\frac{\boldsymbol{\vec{J}}\times \boldsymbol{\hat{R}}}{R^2}\text{d}V\tag{6.1.3} dB =4πμR2Idl ×R^=n^4πr2μIsinθdl=4πμR2J ×R^dV(6.1.3)

H ⃗ = B ⃗ μ = B ⃗ μ 0 μ r (6.1.4) \boldsymbol{\vec{H}}=\frac{\boldsymbol{\vec{B}}}{\mu}=\frac{\boldsymbol{\vec{B}}}{\mu _0\mu _{\boldsymbol{r}}}\tag{6.1.4} H =μB =μ0μrB (6.1.4)

有限/无限长直导线
B ⃗ = μ I 4 π r ( cos ⁡ θ 1 − cos ⁡ θ 2 ) φ ^ \boldsymbol{\vec{B}}=\frac{\mu I}{4\pi r}\left( \cos \theta _1-\cos \theta _2 \right)\boldsymbol{\hat{\varphi}} B =4πrμI(cosθ1cosθ2)φ^

B ⃗ r → ∞ = μ I 2 π r φ ^ (6.1.5) \colorbox{cyan}{$\boldsymbol{\vec{B}}_{r\to \infty}=\frac{\mu I}{2\pi r}\boldsymbol{\hat{\varphi}}$}\tag{6.1.5} B r=2πrμIφ^(6.1.5)

圆环导线
B ⃗ = μ I R 2 2 ( R 2 + z 2 ) 3 2 z ^ \boldsymbol{\vec{B}}=\frac{\mu IR^2}{2\left( R^2+z^2 \right) ^{\frac{3}{2}}}\boldsymbol{\hat{z}} B =2(R2+z2)23μIR2z^

B ⃗ = μ I 2 R z ^ (6.1.6) \colorbox{cyan}{$\boldsymbol{\vec{B}}=\frac{\mu I}{2R}\boldsymbol{\hat{z}}$}\tag{6.1.6} B =2RμIz^(6.1.6)

密绕螺绕环
H ⃗ = N I 2 π r φ ^ = n I φ ^ (6.2.3) \colorbox{cyan}{$\boldsymbol{\vec{H}}$}=\frac{NI}{2\pi r}\boldsymbol{\hat{\varphi}}=\colorbox{cyan}{$nI\boldsymbol{\hat{\varphi}}$}\tag{6.2.3} H =2πrNIφ^=nIφ^(6.2.3)
无限大带电平面
H ⃗ = 1 2 J s φ ^ (6.2.3) \colorbox{cyan}{$\boldsymbol{\vec{H}}=\frac12J_s\boldsymbol{\hat{\varphi}}$}\tag{6.2.3} H =21Jsφ^(6.2.3)

2、磁偶极子

磁偶极距
m ⃗ = n ^ N I S (6.2.1) \boldsymbol{\vec{m}}=\boldsymbol{\hat{n}}NIS\tag{6.2.1} m =n^NIS(6.2.1)

磁偶极子的标量磁位:
U m = m ⃗ ⋅ R ^ 4 π R 2 = N I S cos ⁡ θ 4 π R 2 (6.2.2) \colorbox{cyan}{$U_m$}=\frac{\boldsymbol{\vec{m}}\cdot \boldsymbol{\hat{R}}}{4\pi R^2}=\colorbox{cyan}{$\frac{NIS\cos\theta}{4\pi R^2}$}\tag{6.2.2} Um=4πR2m R^=4πR2NIScosθ(6.2.2)

H ⃗ = − ∇ U m = − 1 4 π ∇ m ⃗ ⋅ R ^ R 2 = 1 4 π ∇ ( m ⃗ ⋅ ∇ 1 R ) (6.2.3) \boldsymbol{\vec{H}}=-\nabla U_m=-\frac{1}{4\pi}\nabla \frac{\boldsymbol{\vec{m}}\cdot \boldsymbol{\hat{R}}}{R^2}=\frac{1}{4\pi}\nabla \left(\boldsymbol{\vec{m}}\cdot\nabla\frac1R\right)\tag{6.2.3} H =Um=4π1R2m R^=4π1(m R1)(6.2.3)

B ⃗ = μ H ⃗ = μ 4 π ( 3 m ⃗ ⋅ R ^ R 3 − m ⃗ R 3 ) = μ m 4 π r 3 ( r ^ 2 cos ⁡ θ + θ ^ sin ⁡ θ ) (6.2.4) \colorbox{cyan}{$\boldsymbol{\vec{B}}$}=\mu \boldsymbol{\vec{H}}=\frac{\mu}{4\pi}\left( \frac{3\boldsymbol{\vec{m}}\cdot \boldsymbol{\hat{R}}}{R^3}-\frac{\boldsymbol{\vec{m}}}{R^3} \right)=\colorbox{cyan}{$\frac{\mu m}{4\pi r^3}\left( \boldsymbol{\hat{r}}2\cos \theta +\boldsymbol{\hat{\theta}}\sin \theta \right)$}\tag{6.2.4} B =μH =4πμ(R33m R^R3m )=4πr3μm(r^2cosθ+θ^sinθ)(6.2.4)

A ⃗ = ∇ × μ m ⃗ 4 π R = μ 4 π m ⃗ × R ^ R 2 = μ I S sin ⁡ θ 4 π R 2 (6.2.5) \colorbox{cyan}{$\boldsymbol{\vec{A}}$}=\nabla \times \frac{\mu \boldsymbol{\vec{m}}}{4\pi R}=\frac{\mu}{4\pi}\frac{\boldsymbol{\vec{m}}\times \boldsymbol{\hat{R}}}{R^2}=\colorbox{cyan}{$\frac{\mu IS\sin \theta}{4\pi R^2}$}\tag{6.2.5} A =×4πRμm =4πμR2m ×R^=4πR2μISsinθ(6.2.5)

磁转矩
T ⃗ = m ⃗ × B ⃗ 0 (6.2.6) \boldsymbol{\vec{T}}=\boldsymbol{\vec{m}}\times \boldsymbol{\vec{B}}_0\tag{6.2.6} T =m ×B 0(6.2.6)

3、磁位

恒定磁场矢量磁位

由位函数定义==(2.1.1)(2.1.3)== 可知: B ⃗ = ∇ × A ⃗ \boldsymbol{\vec{B}}=\nabla \times \boldsymbol{\vec{A}} B =×A ,并且满足库伦规范 ∇ ⋅ A ⃗ = 0 \nabla \cdot \boldsymbol{\vec{A}}=0 A =0

由==(PPA)==可得:
∇ 2 A ⃗ = − μ J ⃗ (6.3.1) \nabla ^2\boldsymbol{\vec{A}}=-\mu \boldsymbol{\vec{J}}\tag{6.3.1} 2A =μJ (6.3.1)

A ⃗ = μ 4 π ∫ S J ⃗ R ⋅ d S = μ I 4 π ∫ l d l ⃗ R (6.3.2) \boldsymbol{\vec{A}}=\frac{\mu }{4\pi}\int_S{\frac{\boldsymbol{\vec{J}}}{R}\cdot \text{d}S}=\frac{\mu I}{4\pi}\int_l{\frac{\boldsymbol{\text{d}\vec{l}}}{R}}\tag{6.3.2} A =4πμSRJ dS=4πμIlRdl (6.3.2)

d A ⃗ = μ J ⃗ 4 π R d S = μ I 4 π R d l ⃗ \colorbox{cyan}{$\text{d}\boldsymbol{\vec{A}}=\frac{\mu \boldsymbol{\vec{J}}}{4\pi R}\text{d}S=\frac{\mu I}{4\pi R}\text{d}\boldsymbol{\vec{l}}$} dA =4πRμJ dS=4πRμIdl

无电流区域( ∇ × H ⃗ = 0 \nabla\times\boldsymbol{\vec H}=0 ×H =0)标量磁位
H ⃗ = − ∇ U m (6.3.3) \boldsymbol{\vec{H}}=-\nabla U_m\tag{6.3.3} H =Um(6.3.3)

4、磁化

M ⃗ = χ m H ⃗ H ⃗ = 1 μ 0 B ⃗ − M ⃗ μ r = 1 + χ m } ⇒ M ⃗ = ( 1 + χ m ) H ⃗ (6.4.1) \left.\begin{array}{l} \boldsymbol{\vec{M}}=\chi _m\boldsymbol{\vec{H}}\\ \boldsymbol{\vec{H}}=\frac1{\mu_0}\boldsymbol{\vec{B}}-\boldsymbol{\vec{M}}\\ \mu _r=1+\chi _m\end{array}\right\}\Rightarrow \boldsymbol{\vec{M}}=(1+\chi_m)\boldsymbol{\vec{H}}\tag{6.4.1} M =χmH H =μ01B M μr=1+χmM =(1+χm)H (6.4.1)

磁介质矢量磁位1
d A ⃗ = μ 4 π M ⃗ × R ^ R 2 d V = μ 4 π M ⃗ × ∇ ( 1 R ) d V (6.4.2) \text{d}\boldsymbol{\vec{A}}=\frac{\mu }{4\pi}\boldsymbol{\vec{M}}\times \frac{\boldsymbol{\hat{R}}}{R^2}\text{d}V=\frac{\mu }{4\pi}\boldsymbol{\vec{M}}\times \nabla \left( \frac{1}{R} \right) \text{d}V\tag{6.4.2} dA =4πμM ×R2R^dV=4πμM ×(R1)dV(6.4.2)

A ⃗ = μ 4 π ∫ V ∇ × M ⃗ R d V + μ 4 π ∫ S M ⃗ × n ^ R d S (6.4.3) \boldsymbol{\vec{A}}=\frac{\mu }{4\pi}\int_V{\frac{\nabla \times \boldsymbol{\vec{M}}}{R}\text{d}V}+\frac{\mu }{4\pi}\int_S{\frac{\boldsymbol{\vec{M}}\times \boldsymbol{\hat{n}}}{R}\text{d}S}\tag{6.4.3} A =4πμVR×M dV+4πμSRM ×n^dS(6.4.3)

体磁化电流密度
J ⃗ m = ∇ × M ⃗ (6.4.4) \colorbox{cyan}{$\boldsymbol{\vec{J}}_m=\nabla \times \boldsymbol{\vec{M}}$}\tag{6.4.4} J m=×M (6.4.4)
面磁化电流密度
J ⃗ m S = M ⃗ × n ^ (6.4.5) \colorbox{cyan}{$\boldsymbol{\vec{J}}_{mS}=\boldsymbol{\vec{M}}\times \boldsymbol{\hat{n}}$}\tag{6.4.5} J mS=M ×n^(6.4.5)
磁介质矢量磁位2
A ⃗ = μ 0 4 π ∫ V J ⃗ m R d V + μ 0 4 π ∮ S J ⃗ m S R d S (6.4.6) \colorbox{cyan}{$\boldsymbol{\vec{A}}=\frac{\mu _0}{4\pi}\int_V{\frac{\boldsymbol{\vec{J}}_m}{R}\text{d}V}+\frac{\mu _0}{4\pi}\oint_S{\frac{\boldsymbol{\vec{J}}_{mS}}{R}\text{d}S}$}\tag{6.4.6} A =4πμ0VRJ mdV+4πμ0SRJ mSdS(6.4.6)
磁介质标量磁位1
d U m = μ 0 4 π M ⃗ ⋅ R ^ R 2 d V = μ 0 4 π M ⃗ ⋅ ∇ ( 1 R ) d V (6.4.7) \text{d}U_m=\frac{\mu _0}{4\pi}\boldsymbol{\vec{M}}\cdot \frac{\boldsymbol{\hat{R}}}{R^2}\text{d}V=\frac{\mu _0}{4\pi}\boldsymbol{\vec{M}}\cdot \nabla \left( \frac{1}{R} \right) \text{d}V\tag{6.4.7} dUm=4πμ0M R2R^dV=4πμ0M (R1)dV(6.4.7)

U m = 1 4 π ∫ V − ∇ ⋅ M ⃗ R d V ’ + 1 4 π ∫ S M ⃗ ⋅ n ^ R d S (6.4.8) U_m=\frac{1}{4\pi}\int_V{\frac{-\nabla \cdot \boldsymbol{\vec{M}}}{R}\text{d}V’}+\frac{1}{4\pi}\int_S{\frac{\boldsymbol{\vec{M}}\cdot \boldsymbol{\hat{n}}}{R}\text{d}S}\tag{6.4.8} Um=4π1VRM dV+4π1SRM n^dS(6.4.8)

磁荷体密度
ρ m = − ∇ ⋅ M ⃗ (6.4.9) \colorbox{cyan}{$\rho _m=-\nabla \cdot \boldsymbol{\vec{M}}$}\tag{6.4.9} ρm=M (6.4.9)
磁荷面密度
ρ m S = M ⃗ ⋅ n ^ (6.4.10) \colorbox{cyan}{$\rho _{mS}=\boldsymbol{\vec{M}}\cdot \boldsymbol{\hat{n}}$}\tag{6.4.10} ρmS=M n^(6.4.10)

U m = μ 0 4 π ∫ V ρ m R d V + μ 0 4 π ∮ S ρ m S R d S (6.4.11) \colorbox{cyan}{$U_m=\frac{\mu _0}{4\pi}\int_V{\frac{\rho _m}{R}\text{d}V}+\frac{\mu _0}{4\pi}\oint_S{\frac{\rho _{mS}}{R}\text{d}S}$}\tag{6.4.11} Um=4πμ0VRρmdV+4πμ0SRρmSdS(6.4.11)

5、恒定磁场的哈密顿算符/边界方程

边界方程

B的法向分量0
n ^ ⋅ ( B ⃗ 1 − B ⃗ 2 ) = 0 (6.5.1) \boldsymbol{\hat{n}}\cdot \left( \boldsymbol{\vec{B}}_1-\boldsymbol{\vec{B}}_2 \right) =0\tag{6.5.1} n^(B 1B 2)=0(6.5.1)
H的切向分量为 J ⃗ S \boldsymbol{\vec{J}}_S J S
n ^ × ( H ⃗ 1 − H ⃗ 2 ) = J ⃗ S (6.5.2) \boldsymbol{\hat{n}}\times \left( \boldsymbol{\vec{H}}_1-\boldsymbol{\vec{H}}_2 \right) =\boldsymbol{\vec{J}}_S\tag{6.5.2} n^×(H 1H 2)=J S(6.5.2)
光学性质(假设边界无自由电荷

如果2区是理想铁磁导体,那么1区电场夹角近似于0度,即与表面平行,铁磁介质的磁场矢量与分界面平行。
B 1 cos ⁡ θ 1 = B 2 cos ⁡ θ 2 H 1 sin ⁡ θ 1 = H 2 sin ⁡ θ 2 B = μ H } ⇒ tan ⁡ θ 1 tan ⁡ θ 2 = μ 1 μ 2 (6.5.3) \left.\begin{matrix}B_1\cos \theta _1=B_2\cos \theta _2\\H_1\sin \theta _1=H_2\sin \theta _2\\B=\mu H\end{matrix}\right\}\Rightarrow\colorbox{cyan}{$\frac{\tan \theta _1}{\tan \theta _2}=\frac{\mu _1}{\mu _2}$}\tag{6.5.3} B1cosθ1=B2cosθ2H1sinθ1=H2sinθ2B=μHtanθ2tanθ1=μ2μ1(6.5.3)
电位方程
{ U m 1 = U m 2 μ 1 ∂ U m 1 ∂ n = μ 2 ∂ U m 2 ∂ n A ⃗ 1 = A ⃗ 2 (6.5.4) \begin{cases} U_{m1}=U_{m2}\\ \mu _1\frac{\partial U_{m1}}{\partial n}=\mu _2\frac{\partial U_{m2}}{\partial n}\\ \boldsymbol{\vec{A}}_1=\boldsymbol{\vec{A}}_2\\ \end{cases}\tag{6.5.4} Um1=Um2μ1nUm1=μ2nUm2A 1=A 2(6.5.4)

(PPA)可得泊松方程
∇ 2 U = − μ J ⃗ (6.5.5) \nabla ^2U=-\mu\boldsymbol{\vec J} \tag{6.5.5} 2U=μJ (6.5.5)

6、磁场能量/磁阻

磁场能量:
w = 1 2 B ⃗ ⋅ H ⃗ (6.6.1) \colorbox{cyan}{$w=\frac12\boldsymbol{\vec B}\cdot\boldsymbol{\vec H}$}\tag{6.6.1} w=21B H (6.6.1)
对于大半径为 r 0 r_0 r0、小内径为a、有d缝隙的环形铁芯,若其 a ≪ r 0 , d ≪ a , μ ≫ μ 0 a\ll r_0,d\ll a,\mu\gg\mu_0 ar0,da,μμ0,在其绕上N匝电流为I的线圈。

定义磁阻
R m = 2 π r 0 + μ r d μ S (6.6.2) R_m=\frac{2\pi r_0+\mu _rd}{\mu S}\tag{6.6.2} Rm=μS2πr0+μrd(6.6.2)
则回路满足:
Φ m R m = N I (6.6.3) \varPhi _mR_m=NI\tag{6.6.3} ΦmRm=NI(6.6.3)
其中称 E m = N I \mathscr{E}_m=NI Em=NI为回路的磁动势

7、自感

单位长度匝数为 n n n、截面积为 S S S、长度为 l l l长直螺线管自感
{ Φ m = μ n I S Ψ = n I Φ m = μ n 2 I S l = μ n 2 I V L = Ψ I = μ n 2 V (6.7.1) \begin{cases} \varPhi _m=\mu nIS\\ \varPsi =nI\varPhi _m=\mu n^2ISl=\mu n^2IV\\ \colorbox{cyan}{$L=\frac{\varPsi}{I}=\mu n^2V$}\\\end{cases}\tag{6.7.1} Φm=μnISΨ=nIΦm=μn2ISl=μn2IVL=IΨ=μn2V(6.7.1)
N N N密绕螺线管自感
L = N 2 L 0 (6.7.2) \colorbox{cyan}{$L=N^2L_0$}\tag{6.7.2} L=N2L0(6.7.2)
两电感串联顺接:KaTeX parse error: Expected '}', got 'EOF' at end of input: …colorbox{cyan}{L_1+L_2+2MKaTeX parse error: Expected 'EOF', got '}' at position 1: }̲,反接:KaTeX parse error: Expected '}', got 'EOF' at end of input: …colorbox{cyan}{L_1+L_2-2MKaTeX parse error: Expected 'EOF', got '}' at position 1: }̲

多匝线圈总互感:
M = ∑ i ∑ j M i j (6.7.3) M=\sum_i\sum_jM_{ij}\tag{6.7.3} M=ijMij(6.7.3)
长为 l l l圆截面导线自感为:
{ L = μ l 8 π L 0 = μ 8 π (6.7.4) \begin{cases} \displaystyle L=\frac{\mu l}{8\pi}\\ \displaystyle \colorbox{cyan}{$L_0=\frac{\mu}{8\pi}$}\\\end{cases}\tag{6.7.4} L=8πμlL0=8πμ(6.7.4)
双线传输线单位长度自感为(距离为 D D D,导线半径为 a a a):
L 0 = μ a ln ⁡ D − a a + μ 4 π ⏟ 內 自 感 (6.7.5) L_0=\frac{\mu}a\ln\frac{D-a}a+\underbrace{\frac{\mu}{4\pi}}_{內自感}\tag{6.7.5} L0=aμlnaDa+ 4πμ(6.7.5)
若式==(6.7.5)==的 D ≫ a D\gg a Da
L 0 ≈ μ a ln ⁡ D a \colorbox{cyan}{$L_0\approx\frac{\mu}a\ln\frac{D}a$} L0aμlnaD
磁导率为 μ \mu μ的圆柱同轴导体,中间夹有 μ 0 \mu_0 μ0的真空层,内导体半径为 a a a,外导体内径为 b b b,外径为 c c c,求单位长度的电感:
L 0 = μ 8 π ⏟ 内 导 体 內 自 感 + μ 2 π [ c 4 ( c 2 − b 2 ) ln ⁡ c b − 3 c 2 − b 2 4 ( c 2 − b 2 ) ] ⏟ 外 导 体 內 自 感 + μ 0 2 π ln ⁡ b a ⏟ 外 自 感 (6.7.6) L_0=\underbrace{\frac{\mu}{8\pi}}_{内导体內自感}+\underbrace{\frac{\mu}{2\pi}\left[ \frac{c^4}{\left( c^2-b^2 \right)}\ln \frac{c}{b}-\frac{3c^2-b^2}{4\left( c^2-b^2 \right)} \right] }_{外导体內自感}+\underbrace{\frac{\mu _0}{2\pi}\ln \frac{b}{a}}_{外自感}\tag{6.7.6} L0= 8πμ+ 2πμ[(c2b2)c4lnbc4(c2b2)3c2b2]+ 2πμ0lnab(6.7.6)
b ≫ a b\gg a ba b ≈ c b\approx c bc时,外自感占主要:
L ≈ μ 0 2 π ln ⁡ b a \colorbox{cyan}{$L\approx\frac{\mu _0}{2\pi}\ln \frac{b}{a}$} L2πμ0lnab

第七章——静态场边值问题

1、平面电场镜像

z > 0 z>0 z>0的全空间充满 ε 1 \varepsilon_1 ε1介质, z < 0 z<0 z<0的全空间充满 ε 2 \varepsilon_2 ε2介质。并且在== ( 0 , 0 , h ) (0,0,h) (0,0,h)处放有点电荷 q 0 q_0 q0==,则:

  1. 对于== z > 0 z>0 z>0区域==,等效于在 ( 0 , 0 , − h ) (0,0,-h) (0,0,h)处放有点电荷 q 1 q_1 q1其场为 q 0 q_0 q0 q 1 q_1 q1的叠加
  2. 对于== z < 0 z<0 z<0区域==,等效于在 ( 0 , 0 , h ) (0,0,h) (0,0,h)处放有点电荷 q 2 q_2 q2其场为 q 2 q_2 q2一个电荷产生的电场

通过推导(跳转到推导3),可以得到结论:

{ q 1 = ε 1 − ε 2 ε 1 + ε 2 q 0 q 2 = 2 ε 2 ε 1 + ε 2 q 0 (7.1.1) \begin{cases} \displaystyle q_1=\frac{\varepsilon _1-\varepsilon _2}{\varepsilon _1+\varepsilon _2}q_0\\ \displaystyle q_2=\frac{2\varepsilon _2}{\varepsilon _1+\varepsilon _2}q_0\\ \end{cases}\tag{7.1.1} q1=ε1+ε2ε1ε2q0q2=ε1+ε22ε2q0(7.1.1)

特别地, z < 0 z<0 z<0的全空间充满 ε 2 → ∞ \varepsilon_2\to\infty ε2的理想导体时: q 1 = − q 0 q_1=-q_0 q1=q0

2、平面磁场镜像

与平面电场镜像类似地,考虑到电磁对偶关系,做替换 ε → 1 μ \varepsilon\to\frac1\mu εμ1
{ I 1 = μ 2 − μ 1 ε 1 + ε 2 I 0 I 2 = 2 μ 1 μ 1 + μ 2 I 0 (7.2.1) \begin{cases} \displaystyle I_1=\frac{\mu _2-\mu _1}{\varepsilon _1+\varepsilon _2}I_0\\ \displaystyle I_2=\frac{2\mu _1}{\mu _1+\mu _2}I_0\\ \end{cases}\tag{7.2.1} I1=ε1+ε2μ2μ1I0I2=μ1+μ22μ1I0(7.2.1)

3、实心导体球镜像

假设在半径为 a a a的导体球外, ( d , 0 , 0 ) (d,0,0) (d,0,0)处有一个点电荷 q 0 q_0 q0,则:

  1. 导体球接地,则在 ( a 2 d , 0 , 0 ) \displaystyle\left( \frac{a^2}{d},0,0 \right) (da2,0,0)处将感应出 q 1 = − a d q 0 \displaystyle q_1=-\frac adq_0 q1=daq0的电荷,其场为 q 0 q_0 q0 q 1 q_1 q1的叠加
  2. 导体球不接地,则在 ( a 2 d , 0 , 0 ) \displaystyle\left( \frac{a^2}{d},0,0 \right) (da2,0,0)处将感应出 q 1 = − a d q 0 \displaystyle q_1=-\frac adq_0 q1=daq0的电荷,并且在球心处感应出 q 2 = q s + a d q 0 \displaystyle q_2=q_s+\frac adq_0 q2=qs+daq0的电荷,其中 q s q_s qs是导体球自带的电荷,其场为 q 0 q_0 q0 q 1 q_1 q1 q 2 q_2 q2的叠加

(考虑到导体球电势等于不加导体球时原导体球心的电势)

4、圆柱面镜像

假设在半径为 a a a的圆柱导体外, ( d , 0 , 0 ) (d,0,0) (d,0,0)处有一个点电荷 ρ 0 \rho_0 ρ0,则:

  1. 圆柱导体接地,则在 ( a 2 d , 0 , 0 ) \displaystyle\left( \frac{a^2}{d},0,0 \right) (da2,0,0)处将感应出 ρ 1 = − ρ 0 \displaystyle \rho_1=-\rho_0 ρ1=ρ0的电荷,其场为 ρ 0 \rho_0 ρ0 ρ 1 \rho_1 ρ1的叠加
  2. 圆柱导体不接地,则在 ( a 2 d , 0 , 0 ) \displaystyle\left( \frac{a^2}{d},0,0 \right) (da2,0,0)处将感应出 ρ 1 = − ρ 0 \displaystyle \rho_1=-\rho_0 ρ1=ρ0的电荷,并且在球心处感应出 ρ 2 = ρ s + ρ 0 \displaystyle \rho_2=\rho_s+\rho_0 ρ2=ρs+ρ0的电荷,其中 q s q_s qs是导体球自带的电荷,其场为 ρ 0 \rho_0 ρ0 ρ 1 \rho_1 ρ1 ρ 2 \rho_2 ρ2的叠加

5、两圆柱电容

在== ( − d , 0 ) (-d,0) (d,0) ( d , 0 ) (d,0) (d,0)处分别有一个半径为 a a a的导体柱==,求它们之间的电容:

  1. 不妨令 b = d 2 − a 2 b=\sqrt{d^2-a^2} b=d2a2 ,设右端带负电 − ρ l -\rho_l ρl,则在 ( ± b , 0 ) (\pm b,0) (±b,0)处会感应出感应电荷 ± ρ l \pm\rho_l ±ρl

U 负 = ρ l 2 π ε 0 ln ⁡ d + d 2 − a 2 a (7.4.1) U_负=\frac{\rho_l}{2\pi\varepsilon_0}\ln\frac{d+\sqrt{d^2-a^2}}a\tag{7.4.1} U=2πε0ρllnad+d2a2 (7.4.1)

C 0 = ρ l V = π ε 0 ln ⁡ d + d 2 − a 2 a (7.4.2) \colorbox{cyan}{$C_0$}=\frac{\rho_l}V=\colorbox{cyan}{$\frac{\pi\varepsilon_0}{\ln\frac{d+\sqrt{d^2-a^2}}a}$}\tag{7.4.2} C0=Vρl=lnad+d2a2 πε0(7.4.2)

d ≫ a d\gg a da时,令 D = 2 d D=2d D=2d
C 0 ≈ π ε 0 ln ⁡ D a (7.4.3) \colorbox{cyan}{$C_0\approx \frac{\pi\varepsilon_0}{\ln\frac{D}a}$}\tag{7.4.3} C0lnaDπε0(7.4.3)

第八章——正弦电磁场

1、正弦场量

复场矢量采用Einstein求和约定(对指标x求和):
E ⃗ = E ⃗ 0 e − j k ⃗ ⋅ r ⃗ = ∑ x ( E 0 x e j φ x x ^ ) ( e − j ( k x x ) ) (8.1.1) \colorbox{cyan}{$\boldsymbol{\vec{E}}=\boldsymbol{\vec{E}}_0\text{e}^{-j\boldsymbol{\vec{k}}\cdot \boldsymbol{\vec{r}}}$}=\sum_x{\left( E_{0x}\text{e}^{j\varphi _x}\boldsymbol{\hat{x}} \right) \left( \text{e}^{-j\left( k_xx \right)} \right)}\tag{8.1.1} E =E 0ejk r =x(E0xejφxx^)(ej(kxx))(8.1.1)
其中:
{ k ⃗ = k x x ^ + k y y ^ + k z z ^ r ⃗ = x x ^ + y y ^ + z z ^ E ⃗ 0 = E 0 x e j φ x x ^ + E 0 y e j φ y y ^ + E 0 z e j φ z z ^ (8.1.2) \begin{cases} \boldsymbol{\vec{k}}=k_x\boldsymbol{\hat{x}}+k_y\boldsymbol{\hat{y}}+k_z\boldsymbol{\hat{z}}\\ \boldsymbol{\vec{r}}=x\boldsymbol{\hat{x}}+y\boldsymbol{\hat{y}}+z\boldsymbol{\hat{z}}\\ \boldsymbol{\vec{E}}_0=E_{0x}\text{e}^{j\varphi _x}\boldsymbol{\hat{x}}+E_{0y}\text{e}^{j\varphi _y}\boldsymbol{\hat{y}}+E_{0z}\text{e}^{j\varphi _z}\boldsymbol{\hat{z}}\\ \end{cases}\tag{8.1.2} k =kxx^+kyy^+kzz^r =xx^+yy^+zz^E 0=E0xejφxx^+E0yejφyy^+E0zejφzz^(8.1.2)

瞬时场矢量(不妨设k、r只有z分量,且E只有x分量):
E ⃗ ( t ) = Re [ E ⃗   e j ω t ] = x ^ E 0 x cos ⁡ ( ω t + φ − k z ) (8.1.3) \boldsymbol{\vec{E}}\left( t \right) =\text{Re}\left[ \boldsymbol{\vec{E}}\,\text{e}^{j\omega t} \right] =\boldsymbol{\hat{x}}E_{0x}\cos \left( \omega t+\varphi -kz \right)\tag{8.1.3} E (t)=Re[E ejωt]=x^E0xcos(ωt+φkz)(8.1.3)
设媒质无耗散,则:
{ k = ω μ ε = ω v = 2 π λ v = 1 μ ε η = μ ε μ 0 = η 0 c = 120 π 3 × 1 0 8 = 4 × 1 0 − 7 π ε 0 = 1 c η 0 = 1 360 π × 1 0 8 (8.1.4) \begin{cases} \displaystyle k=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{v}=\frac{2\pi}{\lambda}\\ \displaystyle v=\frac{1}{\sqrt{\mu \varepsilon}}\\ \displaystyle \eta =\sqrt{\frac{\mu}{\varepsilon}}\\ \displaystyle \colorbox{cyan}{$\mu _0$}=\frac{\eta _0}{c}=\frac{120\pi}{3\times 10^8}=\colorbox{cyan}{$4\times 10^{-7}\pi$}\\ \displaystyle \colorbox{cyan}{$\varepsilon _0$}=\frac{1}{c\eta _0}=\colorbox{cyan}{$\frac{1}{360\pi \times 10^8}$}\\ \end{cases}\tag{8.1.4} k=ωμε =vω=λ2πv=με 1η=εμ μ0=cη0=3×108120π=4×107πε0=cη01=360π×1081(8.1.4)

∇ ⋅ D ⃗ = ρ (WD) \nabla \cdot \boldsymbol{\vec{D}}=\rho\tag{WD} D =ρ(WD)

∇ ⋅ B ⃗ = 0 (WB) \nabla \cdot \boldsymbol{\vec{B}}=0\tag{WB} B =0(WB)

∇ × E ⃗ = − j ω B ⃗ (WE) \nabla \times \boldsymbol{\vec{E}}=-j\omega \boldsymbol{\vec{B}}\tag{WE} ×E =jωB (WE)

∇ × H ⃗ = J ⃗ + j ω D ⃗ (WH) \nabla \times \boldsymbol{\vec{H}}=\boldsymbol{\vec{J}}+j\omega \boldsymbol{\vec{D}}\tag{WH} ×H =J +jωD (WH)

2、色散/坡印廷矢量

ε = ε ′ − j ε ′ ′ (8.2.1) \varepsilon=\varepsilon'-j\varepsilon''\tag{8.2.1} ε=εjε(8.2.1)

等效复电容率:
ε e = ε 0 [ ε ′ − j ( ε ′ ′ + σ ε 0 ω ) ] (8.2.2) \varepsilon_e=\varepsilon_0\left[\varepsilon'-j\left(\varepsilon''+\colorbox{cyan}{$\frac{\sigma}{\varepsilon_0\omega}$}\right)\right]\tag{8.2.2} εe=ε0[εj(ε+ε0ωσ)](8.2.2)
瞬时坡印廷矢量
S ⃗ ( t ) = E ⃗ × H ⃗ (8.2.3) \colorbox{cyan}{$\boldsymbol{\vec{S}}(t)=\boldsymbol{\vec{E}}\times \boldsymbol{\vec{H}}$}\tag{8.2.3} S (t)=E ×H (8.2.3)
复坡印廷矢量
S ⃗ = 1 2 E ⃗ × H ⃗ ∗ (8.2.4) \colorbox{cyan}{$\boldsymbol{\vec{S}}=\frac12\boldsymbol{\vec{E}}\times \boldsymbol{\vec{H}}^*$}\tag{8.2.4} S =21E ×H (8.2.4)
平均坡印廷矢量
< S ⃗ > = Re [ 1 2 E ⃗ × H ⃗ ∗ ] (8.2.5) \colorbox{cyan}{$<\boldsymbol{\vec{S}}>=\text{Re}\left[ \frac{1}{2}\boldsymbol{\vec{E}}\times \boldsymbol{\vec{H}}^* \right]$} \tag{8.2.5} <S >=Re[21E ×H ](8.2.5)
无功功率计算:
{ < w e >    = 1 4 ε ′ E 2 < w m > = 1 4 μ ′ H 2 (8.2.6) \begin{cases} \displaystyle <w_e>\,\,=\frac{1}{4}\varepsilon ' E^2\\ \displaystyle <w_m>=\frac{1}{4}\mu ' H^2\\ \end{cases}\tag{8.2.6} <we>=41εE2<wm>=41μH2(8.2.6)

3、k、E、H转换

{ k = ω μ ε = ω v = 2 π λ v = 1 μ ε η = μ ε μ 0 = η 0 c = 120 π 3 × 1 0 8 = 4 × 1 0 − 7 π ε 0 = 1 c η 0 = 1 360 π × 1 0 8 (8.3.1) \begin{cases} \displaystyle k=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{v}=\frac{2\pi}{\lambda}\\ \displaystyle v=\frac{1}{\sqrt{\mu \varepsilon}}\\ \displaystyle \eta =\sqrt{\frac{\mu}{\varepsilon}}\\ \displaystyle \colorbox{cyan}{$\mu _0$}=\frac{\eta _0}{c}=\frac{120\pi}{3\times 10^8}=\colorbox{cyan}{$4\times 10^{-7}\pi$}\\ \displaystyle \colorbox{cyan}{$\varepsilon _0$}=\frac{1}{c\eta _0}=\colorbox{cyan}{$\frac{1}{360\pi \times 10^8}$}\\ \end{cases}\tag{8.3.1} k=ωμε =vω=λ2πv=με 1η=εμ μ0=cη0=3×108120π=4×107πε0=cη01=360π×1081(8.3.1)

{ H ⃗ = ∇ × E ⃗ − ( j ω ) μ H ⃗ = k ⃗ × E ⃗ ω μ ⇒ E ⃗ = − k ⃗ × H ⃗ ω ε η = ω μ k = μ ε ⇒ H ⃗ = H ^ E η (8.3.2) \begin{cases} \displaystyle \boldsymbol{\vec{H}}=\frac{\nabla \times \boldsymbol{\vec{E}}}{-\left( j\omega \right) \mu}\\ \displaystyle \colorbox{cyan}{$\boldsymbol{\vec{H}}=\frac{\boldsymbol{\vec{k}}\times \boldsymbol{\vec{E}}}{\omega \mu}$}\Rightarrow \colorbox{cyan}{$\boldsymbol{\vec{E}}=-\frac{\boldsymbol{\vec{k}}\times \boldsymbol{\vec{H}}}{\omega \varepsilon}$}\\ \displaystyle \eta =\frac{\omega \mu}{k}=\sqrt{\frac{\mu}{\varepsilon}}\Rightarrow \colorbox{cyan}{$\boldsymbol{\vec{H}}=\boldsymbol{\hat{H}}\frac{E}{\eta}$}\\ \end{cases}\tag{8.3.2} H =(jω)μ×E H =ωμk ×E E =ωεk ×H η=kωμ=εμ H =H^ηE(8.3.2)

平均坡印廷矢量
< S ⃗ > = E ⃗ ⋅ E ⃗ ∗ 2 ω μ k ⃗ = ∣ E ∣ 2 2 η k ^ (8.3.3) \colorbox{cyan}{$<\boldsymbol{\vec{S}}>$}=\frac{\boldsymbol{\vec{E}}\cdot \boldsymbol{\vec{E}}^*}{2\omega \mu}\boldsymbol{\vec{k}}=\colorbox{cyan}{$\frac{|E|^2}{2\eta}\boldsymbol{\hat{k}}$}\tag{8.3.3} <S >=2ωμE E k =2ηE2k^(8.3.3)

4、极化

不妨约定:
{ φ x y = φ x − φ y E 1 = E x ( z 0 , t ) E x m E 2 = E y ( z 0 , t ) E y m E x ( z 0 , t ) = E x m cos ⁡ ( ω t − k z + φ x ) E y ( z 0 , t ) = E y m cos ⁡ ( ω t − k z + φ y ) \begin{cases} \displaystyle \varphi _{xy}=\varphi _x-\varphi _y\\ \displaystyle E_1=\frac{E_x\left( z_0,t \right)}{E_{xm}}\\ \displaystyle E_2=\frac{E_y\left( z_0,t \right)}{E_{ym}}\\ \displaystyle E_x\left( z_0,t \right) =E_{xm}\cos \left( \omega t-kz+\varphi _x \right)\\ \displaystyle E_y\left( z_0,t \right) =E_{ym}\cos \left( \omega t-kz+\varphi _y \right)\\ \end{cases} φxy=φxφyE1=ExmEx(z0,t)E2=EymEy(z0,t)Ex(z0,t)=Exmcos(ωtkz+φx)Ey(z0,t)=Eymcos(ωtkz+φy)
则矢端曲线方程:
E 1 2 − 2 E 1 E 2 cos ⁡ φ x y + E 2 2 = sin ⁡ 2 φ x y (8.4.1) E_{1}^{2}-2E_1E_2\cos \varphi _{xy}+E_{2}^{2}=\sin ^2\varphi _{xy}\tag{8.4.1} E122E1E2cosφxy+E22=sin2φxy(8.4.1)
其中:

  1. 线极化波的充要条件是 φ x y = 0 \varphi _{xy}=0 φxy=0 φ x y = ± π \varphi _{xy}=\pm\pi φxy=±π
  2. 右旋圆极化波的充要条件是 φ x y = π 2 \varphi _{xy}=\frac\pi2 φxy=2π
  3. 左旋圆极化波的充要条件是 φ x y = − π 2 \varphi _{xy}=-\frac\pi2 φxy=2π

5、波的衰减

复波矢量
      ⁣ k = β − j α ⇒ k 2 = β 2 − α 2 − j 2 β α = ω 2 μ ε − j ω μ σ (8.5.1) \quad\ \ \ \:\! k=\beta -j\alpha \\ \Rightarrow k^2=\beta ^2-\alpha ^2-j2\beta \alpha =\colorbox{yellow}{$\omega ^2\mu \varepsilon -j\omega \mu \sigma$}\tag{8.5.1}    k=βjαk2=β2α2j2βα=ω2μεjωμσ(8.5.1)
引入Q(Q越大,损耗越小,越接近理想电介质):
Q = ω ε σ = J d x J c x (8.5.2) \colorbox{cyan}{$Q=\frac{\omega \varepsilon}{\sigma}$}=\frac{J_{dx}}{J_{cx}}\tag{8.5.2} Q=σωε=JcxJdx(8.5.2)
对于良好导体( Q ≪ 1 Q\ll1 Q1,焦耳损耗大)则衰减常数波阻抗 η \eta η透入深度 δ \delta δ
{ δ = 2 ω μ σ β = ω μ ε 2 [ 1 + ( 1 Q ) 2 + 1 ] 1 2 = Q ≪ 1 1 δ α = ω μ ε 2 [ 1 + ( 1 Q ) 2 − 1 ] 1 2 = Q ≪ 1 1 δ η = ω μ k = μ / ε 1 − j 1 Q = Q ≪ 1 ω μ σ e j π 4 (8.5.3) \begin{cases} \colorbox{cyan}{$\delta =\sqrt{\frac{2}{\omega \mu \sigma}}$}\\ \colorbox{cyan}{$\beta$} =\omega \sqrt{\frac{\mu \varepsilon}{2}}\left[ \sqrt{1+\left( \frac{1}{Q} \right) ^2}+1 \right] ^{\frac{1}{2}}\colorbox{cyan}{$\xlongequal{Q\ll 1}\frac{1}{\delta}$}\\ \colorbox{cyan}{$\alpha$} =\omega \sqrt{\frac{\mu \varepsilon}{2}}\left[ \sqrt{1+\left( \frac{1}{Q} \right) ^2}-1 \right] ^{\frac{1}{2}}\colorbox{cyan}{$\xlongequal{Q\ll 1}\frac{1}{\delta}$}\\ \colorbox{cyan}{$\eta$} =\frac{\omega \mu}{k}=\frac{\sqrt{\mu /\varepsilon}}{\sqrt{1-j\frac{1}{Q}}}\colorbox{cyan}{$\xlongequal{Q\ll 1}\sqrt{\frac{\omega \mu}{\sigma}}\text{e}^{j\frac{\pi}{4}}$}\\ \end{cases}\tag{8.5.3} δ=ωμσ2 β=ω2με [1+(Q1)2 +1]21Q1 δ1α=ω2με [1+(Q1)2 1]21Q1 δ1η=kωμ=1jQ1 μ/ε Q1 σωμ ej4π(8.5.3)
良好导体平均功率流密度/表面阻抗
{ < S ⃗ > = z ^ 1 2 H y m e − 2 α z ω μ 2 σ R s = ω μ 2 σ X s = ω μ 2 σ Z s = R s + j X s (8.5.4) \begin{cases} <\boldsymbol{\vec{S}}>=\boldsymbol{\hat{z}}\frac{1}{2}H_{ym}\text{e}^{-2\alpha z}\sqrt{\frac{\omega \mu}{2\sigma}}\\ \colorbox{cyan}{$R_s=\sqrt{\frac{\omega \mu}{2\sigma}}$}\\ X_s=\sqrt{\frac{\omega \mu}{2\sigma}}\\ Z_s=R_s+jX_s\\ \end{cases}\tag{8.5.4} <S >=z^21Hyme2αz2σωμ Rs=2σωμ Xs=2σωμ Zs=Rs+jXs(8.5.4)

6、极化波/驻波/折射反射

R为反射系数,T为折射系数:

垂直极化波 E ⃗ ⋅ n ^ = 0 \boldsymbol{\vec{E}}\cdot \boldsymbol{\hat{n}}=0 E n^=0):
{ η i = μ i ε i sin ⁡ θ 1 sin ⁡ θ 2 = μ 1 ε 1 μ 2 ε 2 = v 2 v 1 R ⊥ = η 2 cos ⁡ θ 1 − η 1 cos ⁡ θ 2 η 2 cos ⁡ θ 1 + η 1 cos ⁡ θ 2 T ⊥ = 2 η 2 cos ⁡ θ 1 η 2 cos ⁡ θ 1 + η 1 cos ⁡ θ 2 (8.6.1) \begin{cases} \eta _i=\sqrt{\frac{\mu _i}{\varepsilon _i}}\\ \colorbox{cyan}{$\frac{\sin \theta _1}{\sin \theta _2}=\sqrt{\frac{\mu _1\varepsilon _1}{\mu _2\varepsilon _2}}$}=\frac{v_2}{v_1}\\ R_{\bot}=\frac{\eta _2\cos \theta _1-\eta _1\cos \theta _2}{\eta _2\cos \theta _1+\eta _1\cos \theta _2}\\ T_{\bot}=\frac{2\eta _2\cos \theta _1}{\eta _2\cos \theta _1+\eta _1\cos \theta _2}\\ \end{cases}\tag{8.6.1} ηi=εiμi sinθ2sinθ1=μ2ε2μ1ε1 =v1v2R=η2cosθ1+η1cosθ2η2cosθ1η1cosθ2T=η2cosθ1+η1cosθ22η2cosθ1(8.6.1)
平行极化波 H ⃗ ⋅ n ^ = 0 \boldsymbol{\vec{H}}\cdot \boldsymbol{\hat{n}}=0 H n^=0):
{ η i = μ i ε i sin ⁡ θ 1 sin ⁡ θ 2 = μ 1 ε 1 μ 2 ε 2 = v 2 v 1 R ∥ = η 1 cos ⁡ θ 1 − η 2 cos ⁡ θ 2 η 1 cos ⁡ θ 1 + η 2 cos ⁡ θ 2 T ∥ = 2 η 2 cos ⁡ θ 1 η 1 cos ⁡ θ 1 + η 2 cos ⁡ θ 2 (8.6.2) \begin{cases} \eta _i=\sqrt{\frac{\mu _i}{\varepsilon _i}}\\ \colorbox{cyan}{$\frac{\sin \theta _1}{\sin \theta _2}=\sqrt{\frac{\mu _1\varepsilon _1}{\mu _2\varepsilon _2}}$}=\frac{v_2}{v_1}\\ R_{\parallel}=\frac{\eta _1\cos \theta _1-\eta _2\cos \theta _2}{\eta _1\cos \theta _1+\eta _2\cos \theta _2}\\ T_{\parallel}=\frac{2\eta _2\cos \theta _1}{\eta _1\cos \theta _1+\eta _2\cos \theta _2}\\ \end{cases}\tag{8.6.2} ηi=εiμi sinθ2sinθ1=μ2ε2μ1ε1 =v1v2R=η1cosθ1+η2cosθ2η1cosθ1η2cosθ2T=η1cosθ1+η2cosθ22η2cosθ1(8.6.2)
反射系数(1->2垂直入射,令 θ = 0 \theta=0 θ=0):
R = ( R ⊥ ) ∣ θ = 0 = η 2 − η 1 η 2 + η 1 (8.6.3) \colorbox{cyan}{$R$}=\left. \left( R_{\bot} \right) \right|_{\theta =0}=\colorbox{cyan}{$\frac{\eta _2-\eta _1}{\eta _2+\eta _1}$}\tag{8.6.3} R=(R)θ=0=η2+η1η2η1(8.6.3)

E ⃗ 1 ( t ) = y ^ E m ( 1 + R ) cos ⁡ ( ω t − k 1 z ) ⏟ 行 波 − y ^ E m 2 R sin ⁡ k 1 z sin ⁡ ω t ⏟ 驻 波 (8.6.4) \boldsymbol{\vec{E}}_1\left( t \right) =\underbrace{\boldsymbol{\hat{y}}E_m\left( 1+R \right) \cos \left( \omega t-k_1z \right) }_{行波}-\underbrace{\boldsymbol{\hat{y}}E_m2R\sin k_1z\sin \omega t}_{驻波}\tag{8.6.4} E 1(t)= y^Em(1+R)cos(ωtk1z) y^Em2Rsink1zsinωt(8.6.4)

驻波比
ρ = 1 + ∣ R ∣ 1 − ∣ R ∣ ⇔ ∣ R ∣ = ρ − 1 ρ + 1 (8.6.5) \colorbox{cyan}{$\rho=\frac{1+|R|}{1-|R|}$}\Leftrightarrow \colorbox{cyan}{$|R|=\frac{\rho-1}{\rho+1}$}\tag{8.6.5} ρ=1R1+RR=ρ+1ρ1(8.6.5)

{ < S ⃗ i > = z ^ E m 2 2 η 1 < S ⃗ r > = − z ^ E m 2 2 η 1 R 2 < S ⃗ t > = z ^ E m 2 2 η 2 T 2 (8.6.6) \begin{cases} <\boldsymbol{\vec{S}}_i>=\boldsymbol{\hat{z}}\frac{E_{m}^{2}}{2\eta _1}\\ <\boldsymbol{\vec{S}}_r>=-\boldsymbol{\hat{z}}\frac{E_{m}^{2}}{2\eta _1}R^2\\ <\boldsymbol{\vec{S}}_t>=\boldsymbol{\hat{z}}\frac{E_{m}^{2}}{2\eta _2}T^2\\ \end{cases}\tag{8.6.6} <S i>=z^2η1Em2<S r>=z^2η1Em2R2<S t>=z^2η2Em2T2(8.6.6)

布儒斯特角(全折射
{ sin ⁡ θ 1 ⊥ = 1 − μ 1 ε 2 / μ 2 ε 1 1 − ( μ 1 / μ 2 ) 2 sin ⁡ θ 1 /  ⁣ / = 1 − μ 2 ε 1 / μ 1 ε 2 1 − ( ε 1 / ε 2 ) 2 = μ 1 = μ 2 = μ 0 1 1 + ε 1 / ε 2 (8.6.7) \begin{cases} \sin \theta _{1\bot}=\sqrt{\frac{1-\mu _1\varepsilon _2/\mu _2\varepsilon _1}{1-\left( \mu _1/\mu _2 \right) ^2}}\\ \sin \theta _{1/\!/}=\sqrt{\frac{1-\mu _2\varepsilon _1/\mu _1\varepsilon _2}{1-\left( \varepsilon _1/\varepsilon _2 \right) ^2}}\xlongequal{\mu _1=\mu _2=\mu _0}\sqrt{\frac{1}{1+\varepsilon _1/\varepsilon _2}}\\ \end{cases}\tag{8.6.7} sinθ1=1(μ1/μ2)21μ1ε2/μ2ε1 sinθ1//=1(ε1/ε2)21μ2ε1/μ1ε2 μ1=μ2=μ0 1+ε1/ε21 (8.6.7)
对于垂直极化波,如果μ12,则不可能全折射。

而对于平行极化波,如果μ12,则有布儒斯特角,以此入射则可发生全折射,可以用于起偏器,将圆极化光转化为偏振光:
sin ⁡ θ B /  ⁣ / = 1 1 + ε 1 / ε 2 = ε 2 ε 1 + ε 2 (8.6.8) \colorbox{cyan}{$\sin \theta _{B/\!/}=\sqrt{\frac{1}{1+\varepsilon _1/\varepsilon _2}}=\sqrt{\frac{\varepsilon _2}{\varepsilon _1+\varepsilon _2}}$}\tag{8.6.8} sinθB//=1+ε1/ε21 =ε1+ε2ε2 (8.6.8)
全反射临界角(大于临界角θ0则可以全反射),可用于将线极化波转化为圆极化波,以及介质波导:
sin ⁡ θ 0 = μ 2 ε 2 μ 1 ε 1 = v 1 v 2 (8.6.9) \colorbox{cyan}{$\sin \theta _0=\sqrt{\frac{\mu _2\varepsilon _2}{\mu _1\varepsilon _1}}$}=\frac{v_1}{v_2}\tag{8.6.9} sinθ0=μ1ε1μ2ε2 =v2v1(8.6.9)
对于临界全反射 ∣ R ∣ = 1 |R|=1 R=1)而言,事实上 R = A − j B A + j B e − j 2 ψ R=\frac{A-jB}{A+jB}\text{e}^{-j2 \psi} R=A+jBAjBej2ψ会引入一个相位滞后:
{ tan ⁡ ψ ⊥ = η 1 η 2 1 cos ⁡ θ 1 ε 1 ε 2 sin ⁡ 2 θ 1 − 1 tan ⁡ ψ /  ⁣ / = η 2 η 1 1 cos ⁡ θ 1 ε 1 ε 2 sin ⁡ 2 θ 1 − 1 (8.6.10) \begin{cases} \tan \psi _{\bot}=\frac{\eta _1}{\eta _2}\frac{1}{\cos \theta _1}\sqrt{\frac{\varepsilon _1}{\varepsilon _2}\sin ^2\theta _1-1}\\ \tan \psi _{/\!/}=\frac{\eta _2}{\eta _1}\frac{1}{\cos \theta _1}\sqrt{\frac{\varepsilon _1}{\varepsilon _2}\sin ^2\theta _1-1}\\ \end{cases}\tag{8.6.10} tanψ=η2η1cosθ11ε2ε1sin2θ11 tanψ//=η1η2cosθ11ε2ε1sin2θ11 (8.6.10)

第九章——导行波

1、TE/TM波

设导波装置沿着 z z z轴,衰减常数为 γ \gamma γ k 2 = ω 2 μ ε k^2=\omega^2\mu\varepsilon k2=ω2με,则:
{ E ⃗    ⁣ = E ⃗ 0 ( x , y ) e − γ z    ⁣ = ( x ^ E 0 x + y ^ E 0 y + z ^ E 0 z ) e − γ z H ⃗ = H ⃗ 0 ( x , y ) e − γ z = ( x ^ H 0 x + y ^ H 0 y + z ^ H 0 z ) e − γ z ∇ × H ⃗ = j ω ε E ⃗ ∇ × E ⃗   = − j ω μ H ⃗ (9.1.1) \begin{cases} \boldsymbol{\vec{E}}\;\!=\boldsymbol{\vec{E}}_0\left( x,y \right) \text{e}^{-\gamma z}\;\!=\left( \boldsymbol{\hat{x}}E_{0x}+\boldsymbol{\hat{y}}E_{0y}+\boldsymbol{\hat{z}}E_{0z} \right) \text{e}^{-\gamma z}\\ \boldsymbol{\vec{H}}=\boldsymbol{\vec{H}}_0\left( x,y \right) \text{e}^{-\gamma z}=\left( \boldsymbol{\hat{x}}H_{0x}+\boldsymbol{\hat{y}}H_{0y}+\boldsymbol{\hat{z}}H_{0z} \right) \text{e}^{-\gamma z}\\ \nabla \times \boldsymbol{\vec{H}}=j\omega \varepsilon \boldsymbol{\vec{E}}\\ \nabla \times \boldsymbol{\vec{E}}\,=-j\omega \mu \boldsymbol{\vec{H}}\\ \end{cases}\tag{9.1.1} E =E 0(x,y)eγz=(x^E0x+y^E0y+z^E0z)eγzH =H 0(x,y)eγz=(x^H0x+y^H0y+z^H0z)eγz×H =jωεE ×E =jωμH (9.1.1)
对于各分量:
{ E 0 x = − 1 γ 2 + k 2 ( γ ∂ E 0 z ∂ x + j ω μ ∂ H 0 z ∂ y ) E 0 y = − 1 γ 2 + k 2 ( − γ ∂ E 0 z ∂ y + j ω μ ∂ H 0 z ∂ x ) H 0 x = − 1 γ 2 + k 2 ( j ω ε ∂ E 0 z ∂ y − γ ∂ H 0 z ∂ x ) H 0 y = − 1 γ 2 + k 2 ( j ω ε ∂ E 0 z ∂ x + γ ∂ H 0 z ∂ y ) (9.1.2) \begin{cases} E_{0x}=-\frac{1}{\gamma ^2+k^2}\left( \gamma \frac{\partial E_{0z}}{\partial x}+j\omega \mu \frac{\partial H_{0z}}{\partial y} \right)\\ E_{0y}=\phantom{-}\frac{1}{\gamma ^2+k^2}\left( -\gamma \frac{\partial E_{0z}}{\partial y}+j\omega \mu \frac{\partial H_{0z}}{\partial x} \right)\\ H_{0x}=\phantom{-}\frac{1}{\gamma ^2+k^2}\left( j\omega \varepsilon \frac{\partial E_{0z}}{\partial y}-\gamma \frac{\partial H_{0z}}{\partial x} \right)\\ H_{0y}=-\frac{1}{\gamma ^2+k^2}\left( j\omega \varepsilon \frac{\partial E_{0z}}{\partial x}+\gamma \frac{\partial H_{0z}}{\partial y} \right)\\ \end{cases}\tag{9.1.2} E0x=γ2+k21(γxE0z+jωμyH0z)E0y=γ2+k21(γyE0z+jωμxH0z)H0x=γ2+k21(jωεyE0zγxH0z)H0y=γ2+k21(jωεxE0z+γyH0z)(9.1.2)
传播常数KaTeX parse error: Expected '}', got 'EOF' at end of input: …colorbox{cyan}{\gamma=j\beta_{mn}KaTeX parse error: Expected 'EOF', got '}' at position 1: }̲

截止频率 f m n f_{mn} fmn、截止波长 λ m n \lambda_{mn} λmn、相位常数 β m n \beta_{mn} βmn、相速度 v p v_{p} vp、导波波长 λ g \lambda_{g} λg
{ f m n = 1 2 μ ε ( m / a ) 2 + ( n / b ) 2 = v 2 ( m / a ) 2 + ( n / b ) 2 λ m n = v f m n = 2 ( m / a ) 2 + ( n / b ) 2 β m n = 2 π λ 1 − ( f m n / f ) 2 = 2 π λ 1 − ( λ / λ m n ) 2 v p = ω β m n = v 1 − ( f m n / f ) 2 = v 1 − ( λ / λ m n ) 2 λ g = v p f = v 1 − ( f m n / f ) 2 = λ 1 − ( λ / λ m n ) 2 (9.1.3) \begin{cases} \colorbox{cyan}{$\displaystyle f_{mn}$}=\frac{1}{2\sqrt{\mu \varepsilon}}\sqrt{\left( m/a \right) ^2+\left( n/b \right) ^2}=\colorbox{cyan}{$\frac{v}{2}\sqrt{\left( m/a \right) ^2+\left( n/b \right) ^2}$}\\ \displaystyle \colorbox{cyan}{$\lambda _{mn}$}=\frac{v}{f_{mn}}=\colorbox{cyan}{$\frac{2}{\sqrt{\left( m/a \right) ^2+\left( n/b \right) ^2}}$}\\ \displaystyle \colorbox{cyan}{$\beta _{mn}=\frac{2\pi}{\lambda}\sqrt{1-\left( f_{mn}/f \right) ^2}$}=\frac{2\pi}{\lambda}\sqrt{1-\left( \lambda /\lambda _{mn} \right) ^2}\\ \displaystyle \colorbox{cyan}{$v_p$}=\frac{\omega}{\beta _{mn}}=\colorbox{cyan}{$\frac{v}{\sqrt{1-\left( f_{mn}/f \right) ^2}}$}=\frac{v}{\sqrt{1-\left( \lambda /\lambda _{mn} \right) ^2}}\\ \displaystyle \colorbox{cyan}{$\lambda _g$}=\frac{v_p}{f}=\colorbox{cyan}{$\frac{v}{\sqrt{1-\left( f_{mn}/f \right) ^2}}$}=\frac{\lambda}{\sqrt{1-\left( \lambda /\lambda _{mn} \right) ^2}}\\ \end{cases}\tag{9.1.3} fmn=2με 1(m/a)2+(n/b)2 =2v(m/a)2+(n/b)2 λmn=fmnv=(m/a)2+(n/b)2 2βmn=λ2π1(fmn/f)2 =λ2π1(λ/λmn)2 vp=βmnω=1(fmn/f)2 v=1(λ/λmn)2 vλg=fvp=1(fmn/f)2 v=1(λ/λmn)2 λ(9.1.3)
波阻抗
{ Z TE = E x H y = − E y H x = ω μ β m n = η 1 − ( f m n / f ) 2 Z TM = E x H y = − E y H x = β m n ω ε = η 1 − ( f m n / f ) 2 (9.1.4) \begin{cases} \colorbox{cyan}{$\text{Z}_{\text{TE}}$}=\frac{E_x}{H_y}=-\frac{E_y}{H_x}=\frac{\omega \mu}{\beta _{mn}}=\colorbox{cyan}{$\frac{\eta}{\sqrt{1-\left( f_{mn}/f \right) ^2}}$}\\ \colorbox{cyan}{$\text{Z}_{\text{TM}}$}=\frac{E_x}{H_y}=-\frac{E_y}{H_x}=\frac{\beta _{mn}}{\omega \varepsilon}=\colorbox{cyan}{$\eta \sqrt{1-\left( f_{mn}/f \right) ^2}$}\\ \end{cases}\tag{9.1.4} ZTE=HyEx=HxEy=βmnωμ=1(fmn/f)2 ηZTM=HyEx=HxEy=ωεβmn=η1(fmn/f)2 (9.1.4)
其中TE10是比较特殊的,往往来说它的波长最大。
{ f 10 = v 2 a λ 10 = 2 a β 10 = 2 π λ 1 − ( λ / 2 a ) 2 v p = v 1 − ( λ / 2 a ) 2 λ g = λ 1 − ( λ / 2 a ) 2 (9.1.5) \colorbox{cyan}{$\left\{ \begin{array}{c} \begin{array}{c} \begin{array}{l} f_{10}=\frac{v}{2a}\\ \lambda _{10}=2a\\ \beta _{10}=\frac{2\pi}{\lambda}\sqrt{1-\left( \lambda /2a \right) ^2}\\ v_p=\frac{v}{\sqrt{1-\left( \lambda /2a \right) ^2}}\\ \lambda _g=\frac{\lambda}{\sqrt{1-\left( \lambda /2a \right) ^2}}\\ \end{array}\\ \end{array}\\ \end{array} \right.$}\tag{9.1.5} f10=2avλ10=2aβ10=λ2π1(λ/2a)2 vp=1(λ/2a)2 vλg=1(λ/2a)2 λ(9.1.5)

2、波导中的能量损耗

传输功率
{ P a v = ∫ S < S ⃗ > ⋅ d S ⃗ = ∫ 0 a d x ∫ 0 b Re [ 1 2 E ⃗ × H ⃗ ] d y P a v = 1 2 Re [ ∫ 0 a d x ∫ 0 b ( E x H y ∗ − E y H x ∗ ) d y ] (9.2.1) \begin{cases} \displaystyle P_{av}=\int_S{<\boldsymbol{\vec{S}}>\cdot \text{d}\boldsymbol{\vec{S}}}=\int_0^a{\text{d}x}\int_0^b{\text{Re}\left[ \frac{1}{2}\boldsymbol{\vec{E}}\times \boldsymbol{\vec{H}} \right] \text{d}y}\\ \displaystyle \phantom{P_{av}}=\frac{1}{2}\text{Re}\left[ \int_0^a{\text{d}x}\int_0^b{\left( E_xH_{y}^{*}-E_yH_{x}^{*} \right) \text{d}y} \right]\\ \end{cases}\tag{9.2.1} Pav=S<S >dS =0adx0bRe[21E ×H ]dyPav=21Re[0adx0b(ExHyEyHx)dy](9.2.1)
TE10模的传输功率(其中Em是x=a/2处的幅度,亦即最大幅值):
{ P a v = 1 2 Re ∫ 0 a d x ∫ 0 b ( − E y H x ∗ ) d y P a v = ω μ a 3 b 4 π 2 β 10 H 0 2 = ω μ a 3 b 4 π 2 β 10 H 0 2 = a b 4 Z TE 10 E m 2 (9.2.2) \begin{cases} \displaystyle \colorbox{cyan}{$P_{av}$}=\frac{1}{2}\text{Re}\int_0^a{\text{d}x}\int_0^b{\left( -E_yH_{x}^{*} \right) \text{d}y}\\ \displaystyle \phantom{P_{av}}=\frac{\omega \mu a^3b}{4\pi ^2}\beta _{10}H_{0}^{2}=\frac{\omega \mu a^3b}{4\pi ^2}\beta _{10}H_{0}^{2}=\colorbox{cyan}{$\frac{ab}{4Z_{\text{TE}_{10}}}E_{m}^{2}$}\\ \end{cases}\tag{9.2.2} Pav=21Re0adx0b(EyHx)dyPav=4π2ωμa3bβ10H02=4π2ωμa3bβ10H02=4ZTE10abEm2(9.2.2)
理想波导的传播常数只有虚部,但实际波导会有一个衰减常数实部,即== γ = α + j β \gamma=\alpha+j\beta γ=α+jβ==,此时衰减常数即为:
P a v ( z ) = P a v ( 0 ) e − 2 α z ⇒ α = − 1 2 P a v d P a v d z (9.2.3) P_{av}\left( z \right) =P_{av}\left( 0 \right) \text{e}^{-2\alpha z}\Rightarrow \alpha =-\frac{1}{2P_{av}}\frac{\text{d}P_{av}}{\text{d}z}\tag{9.2.3} Pav(z)=Pav(0)e2αzα=2Pav1dzdPav(9.2.3)

3、TEM波

根据==(9.1.2)==,对于TEM波,有 γ 2 + k 2 = 0 ⇒ γ = j k = j ω μ ε \gamma^2+k^2=0\Rightarrow \gamma=jk=j\omega\sqrt{\mu\varepsilon} γ2+k2=0γ=jk=jωμε
{ H 0 y = − ε / μ E 0 x = − E 0 x η H 0 x = − ε / μ E 0 y = − E 0 y η (9.3.1) \begin{cases} H_{0y}=\phantom{-}\sqrt{\varepsilon /\mu}E_{0x}=\phantom{-}\frac{E_{0x}}{\eta}\\ H_{0x}=-\sqrt{\varepsilon /\mu}E_{0y}=-\frac{E_{0y}}{\eta}\\ \end{cases}\tag{9.3.1} {H0y=ε/μ E0x=ηE0xH0x=ε/μ E0y=ηE0y(9.3.1)
优点:

  1. 没有截止频率的限制,原则上可以传输任意频率的电磁波
  2. TEM波为非色散波,不会产生宽带信号的变形

缺点:

  1. 开放的双线系统其辐射损耗大
  2. 同轴线系统在频率较高时存在着较大的介质损耗
  3. 功率容量比较小

第十章——电磁辐射

1、赫芝偶极子

{ A ⃗ = μ 0 4 π I d l ⃗ e − j k R R H ⃗ = − φ ^ I d l 4 π k 2 sin ⁡ θ [ 1 j k r + 1 ( j k r ) 2 ] e − j k R E ⃗ = − I d l 4 π ε k 2 c { r ^ 2 cos ⁡ θ [ 1 ( j k r ) 2 + 1 ( j k r ) 3 ] + θ ^ sin ⁡ θ [ 1 j k r + 1 ( j k r ) 2 + 1 ( j k r ) 3 ] } e − j k R (10.1.1) \begin{cases} \boldsymbol{\vec{A}}=\frac{\mu _0}{4\pi}I\text{d}\boldsymbol{\vec{l}}\frac{\text{e}^{-jkR}}{R}\\ \boldsymbol{\vec{H}}=-\boldsymbol{\hat{\varphi}}\frac{I\text{d}l}{4\pi}k^2\sin \theta \left[ \frac{1}{jkr}+\frac{1}{\left( jkr \right) ^2} \right] \text{e}^{-jkR}\\ \boldsymbol{\vec{E}}=-\frac{I\text{d}l}{4\pi \varepsilon}\frac{k^2}{c}\left\{ \boldsymbol{\hat{r}}2\cos \theta \left[ \frac{1}{\left( jkr \right) ^2}+\frac{1}{\left( jkr \right) ^3} \right] +\boldsymbol{\hat{\theta}}\sin \theta \left[ \frac{1}{jkr}+\frac{1}{\left( jkr \right) ^2}+\frac{1}{\left( jkr \right) ^3} \right] \right\} \text{e}^{-jkR}\\ \end{cases}\tag{10.1.1} A =4πμ0Idl RejkRH =φ^4πIdlk2sinθ[jkr1+(jkr)21]ejkRE =4πεIdlck2{r^2cosθ[(jkr)21+(jkr)31]+θ^sinθ[jkr1+(jkr)21+(jkr)31]}ejkR(10.1.1)

近区解 r ≫ 1 , k r ≪ 1 r\gg 1,kr\ll 1 r1,kr1
{ H ⃗ = φ ^ I d l 4 π r 2 sin ⁡ θ E ⃗ = − j   I d l 4 π ε ω r 2 { r ^ 2 cos ⁡ θ + θ ^ sin ⁡ θ } (10.1.2) \colorbox{cyan}{$\begin{cases} \displaystyle \boldsymbol{\vec{H}}=\boldsymbol{\hat{\varphi}}\frac{I\text{d}l}{4\pi r^2}\sin \theta\\ \displaystyle \boldsymbol{\vec{E}}=-\frac{j\,I\text{d}l}{4\pi \varepsilon \omega r^2}\left\{ \boldsymbol{\hat{r}}2\cos \theta +\boldsymbol{\hat{\theta}}\sin \theta \right\}\\ \end{cases}$}\tag{10.1.2} H =φ^4πr2IdlsinθE =4πεωr2jIdl{r^2cosθ+θ^sinθ}(10.1.2)
因为近区电磁有π/2的相位差,故坡印廷矢量为0,没有向外辐射能量。

远区解 k r ≫ 1 kr\gg 1 kr1
{ H ⃗ = φ ^ j   I d l 2 λ r sin ⁡ θ e − j k R E ⃗ = θ ^ j   η I d l 2 λ r sin ⁡ θ e − j k R (10.1.3) \colorbox{cyan}{$\begin{cases} \displaystyle \boldsymbol{\vec{H}}=\boldsymbol{\hat{\varphi}}\frac{j\,I\text{d}l}{2\lambda r}\sin \theta \text{e}^{-jkR}\\ \displaystyle \boldsymbol{\vec{E}}=\boldsymbol{\hat{\theta}}\frac{j\,\eta I\text{d}l}{2\lambda r}\sin \theta \text{e}^{-jkR}\\ \end{cases}$}\tag{10.1.3} H =φ^2λrjIdlsinθejkRE =θ^2λrjηIdlsinθejkR(10.1.3)
平均坡印廷矢量:
< S ⃗ > = r ^ η 2 ( I d l 2 λ ) 2 ( sin ⁡ θ r ) 2 <\boldsymbol{\vec{S}}>=\boldsymbol{\hat{r}}\frac{\eta}{2}\left( \frac{I\text{d}l}{2\lambda} \right) ^2\left( \frac{\sin \theta}{r} \right) ^2 <S >=r^2η(2λIdl)2(rsinθ)2
平均辐射功率:
P a = 1 3 η ( I d l λ ) 2 \colorbox{cyan}{$P_a=\frac{1}{3}\eta \left( \frac{I\text{d}l}{\lambda} \right) ^2$} Pa=31η(λIdl)2
辐射电阻:
R a = 2 π 3 η ( d l λ ) 2 = 80 π 2 ( d l λ ) 2 \colorbox{cyan}{$R_a=\frac{2\pi}{3}\eta \left( \frac{\text{d}l}{\lambda} \right) ^2=80\pi ^2\left( \frac{\text{d}l}{\lambda} \right) ^2$} Ra=32πη(λdl)2=80π2(λdl)2
考虑到表达式中有着因子 sin ⁡ θ \sin\theta sinθ的存在,记一个归一化函数如下:
F ( θ , φ ) = ∣ E ( θ , φ ) ∣ E max ⁡ (10.1.4) F\left( \theta ,\varphi \right) =\frac{\left| E\left( \theta ,\varphi \right) \right|}{E_{\max}}\tag{10.1.4} F(θ,φ)=EmaxE(θ,φ)(10.1.4)
其中对于赫芝偶极子,方向性函数为:
F ( θ ) = sin ⁡ θ F\left(\theta\right)=\sin\theta F(θ)=sinθ

2、磁偶极子天线辐射

远区解
{ E ⃗ = φ ^ η 4 π r m k 2 sin ⁡ θ e − j k r H ⃗ = − θ ^ 1 4 π r m k 2 sin ⁡ θ e − j k r (10.2.1) \begin{cases} \boldsymbol{\vec{E}}=\boldsymbol{\hat{\varphi}}\frac{\eta}{4\pi r}mk^2\sin \theta \text{e}^{-jkr}\\ \boldsymbol{\vec{H}}=-\boldsymbol{\hat{\theta}}\frac{1}{4\pi r}mk^2\sin \theta \text{e}^{-jkr}\\ \end{cases}\tag{10.2.1} {E =φ^4πrηmk2sinθejkrH =θ^4πr1mk2sinθejkr(10.2.1)

P a = 160 π 2 m 2 λ 4 (10.2.2) \colorbox{cyan}{$P_a=\frac{160\pi ^2m^2}{\lambda ^4}$}\tag{10.2.2} Pa=λ4160π2m2(10.2.2)

R a = 20 ( π d λ ) 2 (10.2.3) \colorbox{cyan}{$R_a=20\left( \frac{\pi d}{\lambda} \right) ^2$}\tag{10.2.3} Ra=20(λπd)2(10.2.3)

3、天线阵

二元天线阵 I 2 = m I 1 e − j ζ I_2=mI_1\mathrm e^{-j\zeta} I2=mI1ejζ

则超前相位 ψ = k d cos ⁡ α − ζ \psi=kd\cos\alpha-\zeta ψ=kdcosαζ,其中d为两天线距离,α为天线与天线阵轴线夹角,则合成电场的复振幅为:
E = E 1 + E 2 = E 1 ( 1 + m e j ψ ) (10.3.1) E=E_1+E_2=E_1\left(1+m\mathrm e^{j\psi}\right)\tag{10.3.1} E=E1+E2=E1(1+mejψ)(10.3.1)
对于n元天线阵,不妨设它们电流相等:
E = E 1 [ 1 + e j ψ + e j 2 ψ + ⋯ + e j ( N − 1 ) ψ ] E = E 1 e j N − 1 2 ψ sin ⁡ N ψ 2 sin ⁡ ψ 2 (10.3.2) \begin{array}{l} \displaystyle\colorbox{cyan}{$ E$}=E_1\left[ 1+\text{e}^{j\psi}+\text{e}^{j2\psi}+\cdots +\text{e}^{j\left( N-1 \right) \psi} \right]\\ \displaystyle \phantom{E}=\colorbox{cyan}{$E_1\text{e}^{j\frac{N-1}{2}\psi}\frac{\sin \frac{N\psi}{2}}{\sin \frac{\psi}{2}}$}\\ \end{array}\tag{10.3.2} E=E1[1+ejψ+ej2ψ++ej(N1)ψ]E=E1ej2N1ψsin2ψsin2Nψ(10.3.2)
其中 sin ⁡ N ψ 2 sin ⁡ ψ 2 \frac{\sin \frac{N\psi}{2}}{\sin \frac{\psi}{2}} sin2ψsin2Nψ被称为阵因子 1 N sin ⁡ N ψ 2 sin ⁡ ψ 2 \frac1N\frac{\sin \frac{N\psi}{2}}{\sin \frac{\psi}{2}} N1sin2ψsin2Nψ被称为归一化的阵因子。

KaTeX parse error: Expected '}', got 'EOF' at end of input: …colorbox{cyan}{\cos\alpha=\frac{\zeta}{kd}KaTeX parse error: Expected 'EOF', got '}' at position 1: }̲时,阵因子最大。

对于同相电流,垂直情形最大。

最终章——公式推导合集

由于时间原因,本来这一节是重头戏的,结果没做了。。。

推导1如下:

如下==(H)== +(2.1.1)+(2.1.2) ->求散度>简-> ∇ × ∇ × A ⃗ = μ J ⃗ − μ ε ∂ ∂ t [ ∇ U + ∂ A ⃗ ∂ t ] ( ? . 1 ) \nabla \times \nabla \times \boldsymbol{\vec{A}}=\mu \boldsymbol{\vec{J}}-\mu \varepsilon \frac{\partial}{\partial t}\left[ \nabla U+\frac{\partial \boldsymbol{\vec{A}}}{\partial t} \right](?.1) ××A =μJ μεt[U+tA ](?.1)

(?.1)+(NXX)>简-> ∇ 2 A ⃗ − μ ε ∂ 2 A ⃗ ∂ t 2 = − μ J ⃗ + ∇ ( ∇ ⋅ A ⃗ + μ ε ∂ U ∂ t ) ( ? . 2 ) \nabla ^2\boldsymbol{\vec{A}}-\mu \varepsilon \frac{\partial ^2\boldsymbol{\vec{A}}}{\partial t^2}=-\mu \boldsymbol{\vec{J}}+\nabla \left( \nabla \cdot \boldsymbol{\vec{A}}+\mu \varepsilon \frac{\partial U}{\partial t} \right)(?.2) 2A μεt22A =μJ +(A +μεtU)(?.2)

为使得==(?.2)右边括号处为0,故引入了(2.1.3)==式 $\blacksquare $

<返回推导1对应的原地址>

推导2如下:

∇ × \nabla\times ×(WE)+(WH)+(NXX)+(WD)-> 1 ε ∇ ( ρ ) − ∇ 2 E ⃗ = − μ j ω ( σ E ⃗ + ε j ω E ⃗ ) ( ? . 1 ) \frac{1}{\varepsilon}\nabla \left( \rho \right) -\nabla ^2\boldsymbol{\vec{E}}=-\mu j\omega \left( \sigma \boldsymbol{\vec{E}}+\varepsilon j\omega \boldsymbol{\vec{E}} \right) (?.1) ε1(ρ)2E =μjω(σE +εjωE )(?.1)

ρ = 0 \rho=0 ρ=0(?.1)->简-> ∇ 2 E ⃗ = μ j ω σ E ⃗ + μ ε ( j ω ) 2 E ⃗ \nabla ^2\boldsymbol{\vec{E}}=\mu j\omega \sigma \boldsymbol{\vec{E}}+\mu \varepsilon \left( j\omega \right) ^2\boldsymbol{\vec{E}} 2E =μjωσE +με(jω)2E

==(PPE)==得证$\blacksquare $

<返回推导2对应的原地址>

推导3如下:

由==(4.4.4)==-> 1 ε 1 [ q 0 ρ 2 + ( z − h ) 2 + q 1 ρ 2 + ( z + h ) 2 ] ∣ z = 0 = 1 ε 2 [ q 2 ρ 2 + ( z − h ) 2 ] ∣ z = 0 ( ? . 1 ) \frac{1}{\varepsilon _1}\left. \left[ \frac{q_0}{\rho ^2+\left( z-h \right) ^2}+\frac{q_1}{\rho ^2+\left( z+h \right) ^2} \right] \right|_{z=0}=\frac{1}{\varepsilon _2}\left. \left[ \frac{q_2}{\rho ^2+\left( z-h \right) ^2} \right] \right|_{z=0}(?.1) ε11[ρ2+(zh)2q0+ρ2+(z+h)2q1]z=0=ε21[ρ2+(zh)2q2]z=0(?.1)+ ∂ ∂ z [ q 0 ρ 2 + ( z − h ) 2 + q 1 ρ 2 + ( z + h ) 2 ] ∣ z = 0 = ∂ ∂ z [ q 2 ρ 2 + ( z − h ) 2 ] ∣ z = 0 ( ? . 2 ) \frac{\partial}{\partial z}\left. \left[ \frac{q_0}{\rho ^2+\left( z-h \right) ^2}+\frac{q_1}{\rho ^2+\left( z+h \right) ^2} \right] \right|_{z=0}=\frac{\partial}{\partial z}\left. \left[ \frac{q_2}{\rho ^2+\left( z-h \right) ^2} \right] \right|_{z=0}(?.2) z[ρ2+(zh)2q0+ρ2+(z+h)2q1]z=0=z[ρ2+(zh)2q2]z=0(?.2)

(?.1)->简-> 1 ε 1 ( q 0 + q 1 ) = 1 ε 2 q 2 ( ? . 3 ) \frac{1}{\varepsilon _1}\left( q_0+q_1 \right) =\frac{1}{\varepsilon _2}q_2(?.3) ε11(q0+q1)=ε21q2(?.3)

(?.2)->简-> q 0 − q 1 = q 2 ( ? . 4 ) q_0-q_1=q_2(?.4) q0q1=q2(?.4)

(?.3)+(?.4)->简-> { q 1 = ε 1 − ε 2 ε 1 + ε 2 q 0 q 2 = 2 ε 2 ε 1 + ε 2 q 0 \begin{cases} q_1=\frac{\varepsilon _1-\varepsilon _2}{\varepsilon _1+\varepsilon _2}q_0\\ q_2=\frac{2\varepsilon _2}{\varepsilon _1+\varepsilon _2}q_0\\ \end{cases} {q1=ε1+ε2ε1ε2q0q2=ε1+ε22ε2q0

==(7.1.1)==得证$\blacksquare $

<返回推导3对应的原地址>

lon j\omega \boldsymbol{\vec{E}} \right) (?.1)$

ρ = 0 \rho=0 ρ=0(?.1)->简-> ∇ 2 E ⃗ = μ j ω σ E ⃗ + μ ε ( j ω ) 2 E ⃗ \nabla ^2\boldsymbol{\vec{E}}=\mu j\omega \sigma \boldsymbol{\vec{E}}+\mu \varepsilon \left( j\omega \right) ^2\boldsymbol{\vec{E}} 2E =μjωσE +με(jω)2E

==(PPE)==得证$\blacksquare $

<返回推导2对应的原地址>

推导3如下:

由==(4.4.4)==-> 1 ε 1 [ q 0 ρ 2 + ( z − h ) 2 + q 1 ρ 2 + ( z + h ) 2 ] ∣ z = 0 = 1 ε 2 [ q 2 ρ 2 + ( z − h ) 2 ] ∣ z = 0 ( ? . 1 ) \frac{1}{\varepsilon _1}\left. \left[ \frac{q_0}{\rho ^2+\left( z-h \right) ^2}+\frac{q_1}{\rho ^2+\left( z+h \right) ^2} \right] \right|_{z=0}=\frac{1}{\varepsilon _2}\left. \left[ \frac{q_2}{\rho ^2+\left( z-h \right) ^2} \right] \right|_{z=0}(?.1) ε11[ρ2+(zh)2q0+ρ2+(z+h)2q1]z=0=ε21[ρ2+(zh)2q2]z=0(?.1)+ ∂ ∂ z [ q 0 ρ 2 + ( z − h ) 2 + q 1 ρ 2 + ( z + h ) 2 ] ∣ z = 0 = ∂ ∂ z [ q 2 ρ 2 + ( z − h ) 2 ] ∣ z = 0 ( ? . 2 ) \frac{\partial}{\partial z}\left. \left[ \frac{q_0}{\rho ^2+\left( z-h \right) ^2}+\frac{q_1}{\rho ^2+\left( z+h \right) ^2} \right] \right|_{z=0}=\frac{\partial}{\partial z}\left. \left[ \frac{q_2}{\rho ^2+\left( z-h \right) ^2} \right] \right|_{z=0}(?.2) z[ρ2+(zh)2q0+ρ2+(z+h)2q1]z=0=z[ρ2+(zh)2q2]z=0(?.2)

(?.1)->简-> 1 ε 1 ( q 0 + q 1 ) = 1 ε 2 q 2 ( ? . 3 ) \frac{1}{\varepsilon _1}\left( q_0+q_1 \right) =\frac{1}{\varepsilon _2}q_2(?.3) ε11(q0+q1)=ε21q2(?.3)

(?.2)->简-> q 0 − q 1 = q 2 ( ? . 4 ) q_0-q_1=q_2(?.4) q0q1=q2(?.4)

(?.3)+(?.4)->简-> { q 1 = ε 1 − ε 2 ε 1 + ε 2 q 0 q 2 = 2 ε 2 ε 1 + ε 2 q 0 \begin{cases} q_1=\frac{\varepsilon _1-\varepsilon _2}{\varepsilon _1+\varepsilon _2}q_0\\ q_2=\frac{2\varepsilon _2}{\varepsilon _1+\varepsilon _2}q_0\\ \end{cases} {q1=ε1+ε2ε1ε2q0q2=ε1+ε22ε2q0

==(7.1.1)==得证$\blacksquare $

<返回推导3对应的原地址>


  1. [1]田晓岑,张萍.球坐标和柱坐标下▽f、▽·(fg)、▽×(fg)、▽~2f的运算公式[J].大学物理,2001(02):8-11. ↩︎ ↩︎

  • 29
    点赞
  • 136
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值