变分法中的欧拉方程的细致讲解&详细推导

前言

本文的参考书目为欧斐君编著的《变分法及其应用——物理、力学、工程中的经典建模》。由于某位大佬给了我这本书的PDF,也开启了我的变分法学习之旅。因为被变分法的欧拉方程惊艳到了,所以决定将边学边抄书。因为书中只推导了二维、低次的情形,于是我把每种情形的高维高次的情形都推导了一遍,并且许多证明是我按照自己的理解写的,因此证明过程和书中略有区别。我将所有结论放到了最后一章节「总结」部分。

吐槽:为什么CSDN用的 KaTeX渲染的公式。。。KaTeX不支持 reflabel ,我本地的 Typora 用的 MathJax 渲染的,链接索引都白写了(大哭)

0、泛函的概念

在高中,我们学过映射,函数其实就是一种映射法则。

举个例子,苹果的单价为 3 ( 元 / 斤 ) 3\left( \text{元}/\text{斤} \right) 3(/) ,那么假设苹果的斤数为 x ( 斤 ) x\left( \text{斤} \right) x() ,苹果的价格为 y ( 元 ) y\left( \text{元} \right) y() 。此时有函数关系 y = f ( x ) = 3 x y=f\left( x \right)=3x y=f(x)=3x 。因为自变量「苹果的斤数」的取值范围是实数集 R \mathbb{R} R ,因变量「苹果的价格」的取值范围也是实数集 R \mathbb{R} R ,所以我们认为这里的函数关系是 R → f R \mathbb{R}\xrightarrow[]{f}\mathbb{R} Rf R

但有时候,我们我们希望研究「在一定条件下的最优函数」。例如已知可微曲线过定点 ( 0 , 0 ) \left(0,0\right) (0,0) ( 1 , 2 ) \left(1,2\right) (1,2) ,求满足条件的最短曲线。如果我们假设曲线为 y = f ( x ) y=f\left( x \right) y=f(x) ,我们知道弧长表达式为
I [ f ( ⋅ ) ] = ∫ 0 1 F ( x , f , f ′ ) d x = ∫ 0 1 1 + [ f ′ ( x ) ] 2 d x (0.1) I\left[ f\left( \cdot \right) \right] = \int_0^1 {F\left( x ,f ,f^\prime \right)\mathrm{d}x} = \int_0^1 {\sqrt{1+\left[f^{\prime}\left(x\right)\right]^2}\mathrm{d}x}\tag{0.1} I[f()]=01F(x,f,f)dx=011+[f(x)]2 dx(0.1)
此处函数 I [ f ( ⋅ ) ] I\left[ f\left( \cdot \right) \right] I[f()] 的自变量 f f f 属于二次可微函数集 C [ 0 , 1 ] ( 2 ) C_{\left[ 0,1 \right]}^{\left(2\right)} C[0,1](2)。也就是说我们可以看作函数 I I I 是自变量为函数,因变量为实数的函数。换句话说,函数 I I I函数的函数,我们称之为泛函。或者可以记为 C [ 0 , 1 ] ( 2 ) → I R C_{\left[ 0,1 \right]}^{\left(2\right)}\xrightarrow[]{I}\mathbb{R} C[0,1](2)I R

换一个角度看,泛函相当于为每个函数赋予了一个实数值,从而将研究「在一定条件下的最优函数」的问题,转化为了泛函数求最值的问题。而「非边界点的最值的必要条件是极值」,再回忆高数讲的费马引理——「函数极值的必要条件是导数为 0 0 0 」,从而我们可以「通过求导来研究最值/极值问题」。那么,我们能不能把这一结论推广到泛函呢?这就是我们本文要讲的欧拉方程了

1、变分学基本引理

因为整个变分中都会大量用到这个引理,所以书中将其提出来单独作为一个引理。

当然,这个引理也是相当直观的,直观上,如果一个函数 f ( x ) f\left( x \right) f(x) 和任一高阶可微的函数 η ( x ) \eta \left( x \right) η(x) 正交,那么这个函数理应满足 f ( x ) ≡ 0 f\left( x \right) \equiv 0 f(x)0

引理内容

如果 f ( x ) f\left( x \right) f(x) [ x 1 , x 2 ] \left[ x_1,x_2 \right] [x1,x2] 上连续, η ( x ) \eta \left( x \right) η(x) 是在 [ x 1 , x 2 ] \left[ x_1,x_2 \right] [x1,x2] N N N 次可微的任意函数( N N N 可为任意自然数)。如果对于任意的 η ( x ) \eta \left( x \right) η(x) ,都恒有

∫ x 1 x 2 f ( x ) η ( x ) d x = 0 (1.1) \int_{x_1}^{x_2}{f\left( x \right) \eta \left( x \right) \mathrm{d}x}=0 \tag{1.1} x1x2f(x)η(x)dx=0(1.1)

则必有

f ( x ) ≡ 0 , x ∈ [ x 1 , x 2 ] f\left( x \right) \equiv 0, x \in \left[ x_1,x_2 \right] f(x)0,x[x1,x2]

引理的理解与说明

其实这个条引理相当直观,我们知道:函数向量 f ( x ) f\left( x \right) f(x) η ( x ) \eta \left( x \right) η(x) 的内积是 ∫ x 1 x 2 f ( x ) η ( x ) d x \int_{x_1}^{x_2}{f\left( x \right) \eta \left( x \right) \mathrm{d}x} x1x2f(x)η(x)dx 。如果某个函数向量 f ( x ) f\left( x \right) f(x) 和任意函数 η ( x ) \eta \left( x \right) η(x) 都正交,唯一的可能就是——这个函数 f ( x ) f\left( x \right) f(x) 是零向量,即 f ( x ) ≡ 0 f\left( x \right) \equiv 0 f(x)0

实际上,原书中还要求了边界条件 η ( x 1 ) = η ( x 2 ) = 0 \eta \left( x_1 \right) = \eta \left( x_2 \right) = 0 η(x1)=η(x2)=0 ,但这一边界条件是不必要的,虽然我们一般都会假设它成立,用以作为边界条件。

这个定理的证明也很简单,采用了反证法

假设有一个点 x 0 x_0 x0 0 0 0 ,不妨假设 f ( x 0 ) > 0 f\left( x_0 \right) > 0 f(x0)>0 ,由连续性,我们就能找到一个区间 x 0 ∈ [ x ˉ 1 , x ˉ 2 ] x_0\in \left[ \bar{x}_1,\bar{x}_2 \right] x0[xˉ1,xˉ2] 上函数恒正。我们再找一个恒正的 2 n − 1 2n-1 2n1 次可微函数 η ( x ) = ( x − x ˉ 1 ) 2 n ( x − x ˉ 2 ) 2 n , x ∈ [ x ˉ 1 , x ˉ 2 ] \eta \left( x \right) =\left( x-\bar{x}_1 \right) ^{2n}\left( x-\bar{x}_2 \right) ^{2n}, x\in \left[ \bar{x}_1,\bar{x}_2 \right] η(x)=(xxˉ1)2n(xxˉ2)2n,x[xˉ1,xˉ2] ,其中函数在区间外取 0 0 0 。那么 f ( x ) η ( x ) f\left( x \right) \eta \left( x \right) f(x)η(x) [ x ˉ 1 , x ˉ 2 ] \left[ \bar{x}_1,\bar{x}_2 \right] [xˉ1,xˉ2] 上恒正,其余点为 0 0 0 ,积分必大于 0 0 0 ,这与式 ( 1.1 ) \left(1.1\right) (1.1) 矛盾,因此 f ( x ) f\left( x \right) f(x) 处处为 0 0 0 ,即 f ( x ) ≡ 0 f\left( x \right) \equiv 0 f(x)0

之所以说称这个定理为「变分学基本引理」,我们可以换一个更简洁明了的角度来说明这个定理。其实这个定理说明的是这样一个结论——
∀ η ( x ) , ∫ x 1 x 2 f ( x ) η ( x ) d x = 0 ⇒ f ( x ) ≡ 0 , x ∈ [ x ˉ 1 , x ˉ 2 ] (1.2) \forall \eta \left( x \right) , \int_{x_1}^{x_2}{f\left( x \right) \eta \left( x \right) \mathrm{d}x}=0 \Rightarrow f\left( x \right) \equiv 0, x\in \left[ \bar{x}_1,\bar{x}_2 \right] \tag{1.2} η(x),x1x2f(x)η(x)dx=0f(x)0,x[xˉ1,xˉ2](1.2)
我们可以通过这个定理去掉泛函的积分以及任意函数 η ( x ) \eta \left( x \right) η(x) ,因此,只要涉及积分的泛函,就逃不开这个定理。

2、单方程单变量欧拉方程

2.1、单方程单变量一次的欧拉方程的证明

定理内容

设泛函
I [ y ( ⋅ ) ] = ∫ x 1 x 2 F ( x , y , y ′ ) d x (2.1) I\left[ y\left( \cdot \right) \right] = \int_{x_1}^{x_2} {F\left( x ,y ,y^\prime \right)\mathrm{d}x} \tag{2.1} I[y()]=x1x2F(x,y,y)dx(2.1)
其中 F F F 是有着三个独立变量的已知函数,且具有二阶连续偏导数,其可取函数集为
Y 1 , 1 , 1 = { y ( x ) ∣ y ( x ) ∈ C [ x 1 , x 2 ] ( 2 ) y ( x 1 ) = y 1 , y ( x 2 ) = y 2 } (2.2) \mathbb{Y}_{1,1,1}=\left\{ y\left( x \right) \left| \begin{array}{l} y\left( x \right) \in C_{\left[ x_1,x_2 \right]}^{\left( 2 \right)}\\ y\left( x_1 \right) =y_1,y\left( x_2 \right) =y_2\\ \end{array} \right. \right\} \tag{2.2} Y1,1,1={y(x)y(x)C[x1,x2](2)y(x1)=y1,y(x2)=y2}(2.2)
Y ( x ) ∈ Y 1 , 1 , 1 Y\left(x\right) \in \mathbb{Y}_{1,1,1} Y(x)Y1,1,1 使泛函 ( 2.1 ) \left(2.1\right) (2.1) 取得极小值的必要条件是: Y ( x ) Y\left(x\right) Y(x) 是微分方程 ( 2.3 ) \left(2.3\right) (2.3) 的解
F y − d d x F y ′ = 0 (2.3) F_y-\frac{\mathrm{d}}{\mathrm{d}x}F_{y^\prime}=0 \tag{2.3} FydxdFy=0(2.3)
其中 F y = ∂ F ∂ y = F 2 ′ F_y=\frac{\partial F}{\partial y}=F_2^\prime Fy=yF=F2 F y ′ = ∂ F ∂ y ′ = F 3 ′ F_{y^\prime}=\frac{\partial F}{\partial y^\prime}=F_3^\prime Fy=yF=F3

定理的理解与证明

我们知道,一元函数极值得到必要条件为 f ′ ( x 0 ) = 0 f^\prime \left( x_0 \right)=0 f(x0)=0 ,即 d f d x ∣ x = x 0 = 0 \left. \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x=x_0}=0 dxdfx=x0=0 ,亦即 [ d f ( x 0 + α ) d α ] ∣ α = 0 = 0 \left. \left[ \frac{\mathrm{d}f\left( x_0+\alpha \right)}{\mathrm{d}\alpha} \right] \right|_{\alpha =0}=0 [dαdf(x0+α)]α=0=0 。那么泛函的 f ′ ( x 0 ) = [ d f ( x 0 + α ) d α ] ∣ α = 0 f^\prime \left( x_0 \right) = \left. \left[ \frac{\mathrm{d}f\left( x_0+\alpha \right)}{\mathrm{d}\alpha} \right] \right|_{\alpha =0} f(x0)=[dαdf(x0+α)]α=0 应当对应了什么呢?

对于我们期望的极值函数 Y ( x ) Y\left( x \right) Y(x) ,它应当满足这样的性质——我们将其叠加上一个任意的函数 α ⋅ η ( x ) \alpha \cdot \eta \left( x \right ) αη(x) ,只要能使得 y ( x ) = Y ( x ) + α ⋅ η ( x ) y\left( x \right)=Y\left( x \right)+\alpha \cdot \eta \left( x \right ) y(x)=Y(x)+αη(x) 满足边界条件 ( 2.2 ) \left(2.2\right) (2.2) ,就有 [ d I ( Y + α η ) d α ] ∣ α = 0 = 0 \left. \left[ \frac{\mathrm{d}I\left( Y+\alpha \eta \right)}{\mathrm{d}\alpha} \right] \right|_{\alpha =0}=0 [dαdI(Y+αη)]α=0=0 。其中 α \alpha α 是一个充分小的实数,我们期望它的行为类似于 d x \mathrm{d}x dx η ( x ) \eta \left( x \right ) η(x) 是满足条件 ( 2.4 ) \left(2.4\right) (2.4) 的任意函数
Y 1 , 1 , 1 ( 0 ) = { η ( x ) ∣ η ( x ) ∈ C [ x 1 , x 2 ] ( 2 ) η ( x 1 ) = 0 , η ( x 2 ) = 0 } (2.4) \mathbb{Y}_{1,1,1}^{\left( 0 \right)}=\left\{ \eta\left( x \right) \left| \begin{array}{l} \eta\left( x \right) \in C_{\left[ x_1,x_2 \right]}^{\left( 2 \right)}\\ \eta\left( x_1 \right) =0,\eta\left( x_2 \right) =0\\ \end{array} \right. \right\} \tag{2.4} Y1,1,1(0)={η(x)η(x)C[x1,x2](2)η(x1)=0,η(x2)=0}(2.4)

注1 α \alpha α 理论上是可以任意实数,但实际上我们只会用到 [ d d α I [ y ( ⋅ ) ] ] ∣ α = 0 \left. \left[ \frac{\mathrm{d}}{\mathrm{d}\alpha}I\left[ y\left( \cdot \right) \right] \right] \right|_{\alpha =0} [dαdI[y()]]α=0 ,所以我们可以把 α \alpha α 当作类似于 ε \varepsilon ε 的工具人(笑)。
注2 η \eta η 满足的 Y 1 , 1 , 1 ( 0 ) \mathbb{Y}_{1,1,1}^{\left( 0 \right)} Y1,1,1(0) y y y 满足的 Y 1 , 1 , 1 \mathbb{Y}_{1,1,1} Y1,1,1 唯一区别就在于边界条件为零,这是为了确保 Y , y ∈ Y 1 , 1 , 1 Y,y\in\mathbb{Y}_{1,1,1} Y,yY1,1,1

那么,就让我们来求一下 [ d I ( Y + α η ) d α ] ∣ α = 0 \left. \left[ \frac{\mathrm{d}I\left( Y+\alpha \eta \right)}{\mathrm{d}\alpha} \right] \right|_{\alpha =0} [dαdI(Y+αη)]α=0 吧!

首先
d I ( Y + α η ) d α = d d α ∫ x 1 x 2 F ( x , Y + α η , Y ′ + α η ′ ) d x = ∫ x 1 x 2 ( η ∂ F ( x , Y + α η , Y ′ + α η ′ ) ∂ y + η ′ ∂ F ( x , Y + α η , Y ′ + α η ′ ) ∂ y ′ ) d x (2.5) \begin{aligned} \frac{\mathrm{d}I\left( Y+\alpha \eta \right)}{\mathrm{d}\alpha}&=\frac{\mathrm{d}}{\mathrm{d}\alpha}\int_{x_1}^{x_2}{F\left( x,Y+\alpha \eta ,Y^\prime+\alpha \eta ^\prime \right) \mathrm{d}x}\\ &=\int_{x_1}^{x_2}{\left( \eta \frac{\partial F\left( x,Y+\alpha \eta ,Y^\prime+\alpha \eta ^\prime \right)}{\partial y}+\eta ^\prime\frac{\partial F\left( x,Y+\alpha \eta ,Y^\prime+\alpha \eta ^\prime \right)}{\partial y^\prime} \right) \mathrm{d}x}\\ \end{aligned}\tag{2.5} dαdI(Y+αη)=dαdx1x2F(x,Y+αη,Y+αη)dx=x1x2(ηyF(x,Y+αη,Y+αη)+ηyF(x,Y+αη,Y+αη))dx(2.5)
因此
[ d I ( Y + α η ) d α ] ∣ α = 0 = ∫ x 1 x 2 ( η ∂ F ( x , Y , Y ′ ) ∂ y + η ′ ∂ F ( x , Y , Y ′ ) ∂ y ′ ) d x = ∫ x 1 x 2 ( η ∂ F ∂ y + η ′ ∂ F ∂ y ′ ) d x (2.6) \begin{aligned} \left. \left[ \frac{\mathrm{d}I\left( Y+\alpha \eta \right)}{\mathrm{d}\alpha} \right] \right|_{\alpha =0}&=\int_{x_1}^{x_2}{\left( \eta \frac{\partial F\left( x,Y,Y^\prime \right)}{\partial y}+\eta ^\prime\frac{\partial F\left( x,Y,Y^\prime \right)}{\partial y^\prime} \right) \mathrm{d}x}\\ &=\int_{x_1}^{x_2}{\left( \eta \frac{\partial F}{\partial y}+\eta ^\prime\frac{\partial F}{\partial y^\prime} \right) \mathrm{d}x}\\ \end{aligned} \tag{2.6} [dαdI(Y+αη)]α=0=x1x2(ηyF(x,Y,Y)+ηyF(x,Y,Y))dx=x1x2(ηyF+ηyF)dx(2.6)
针对积分 ∫ x 1 x 2 ( η ′ ∂ F ∂ y ′ ) d x \int_{x_1}^{x_2}{\left( \eta ^\prime\frac{\partial F}{\partial y^\prime} \right) \mathrm{d}x} x1x2(ηyF)dx 应用一次分部积分,得到
∫ x 1 x 2 η ′ ∂ F ∂ y ′ d x = ∫ x 1 x 2 ∂ F ∂ y ′ d η = ( η ∂ F ∂ y ′ ) ∣ x = x 1 x = x 2 − ∫ x 1 x 2 η ( d d x ∂ F ∂ y ′ ) d x = − ∫ x 1 x 2 η ( d d x ∂ F ∂ y ′ ) d x (2.7) \begin{aligned} \int_{x_1}^{x_2}{\eta ^\prime\frac{\partial F}{\partial y^\prime}\mathrm{d}x}&=\int_{x_1}^{x_2}{\frac{\partial F}{\partial y^\prime}\mathrm{d}\eta}\\ &=\left. \left( \eta \frac{\partial F}{\partial y^\prime} \right) \right|_{x=x_1}^{x=x_2}-\int_{x_1}^{x_2}{\eta \left( \frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime} \right) \mathrm{d}x}\\ &=-\int_{x_1}^{x_2}{\eta \left( \frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime} \right) \mathrm{d}x}\\ \end{aligned}\tag{2.7} x1x2ηyFdx=x1x2yFdη=(ηyF)x=x1x=x2x1x2η(dxdyF)dx=x1x2η(dxdyF)dx(2.7)
结合 ( 2.6 ) \left(2.6\right) (2.6) ( 2.7 ) \left(2.7\right) (2.7) 可以得到

[ d I ( Y + α η ) d α ] ∣ α = 0 = ∫ x 1 x 2 ( η ∂ F ∂ y + η ′ ∂ F ∂ y ′ ) d x = ∫ x 1 x 2 η ( ∂ F ∂ y − d d x ∂ F ∂ y ′ ) d x (2.8) \begin{aligned} \left. \left[ \frac{\mathrm{d}I\left( Y+\alpha \eta \right)}{\mathrm{d}\alpha} \right] \right|_{\alpha =0}&=\int_{x_1}^{x_2}{\left( \eta \frac{\partial F}{\partial y}+\eta ^\prime\frac{\partial F}{\partial y^\prime} \right) \mathrm{d}x}\\ &=\int_{x_1}^{x_2}{\eta \left( \frac{\partial F}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime} \right) \mathrm{d}x}\\ \end{aligned} \tag{2.8} [dαdI(Y+αη)]α=0=x1x2(ηyF+ηyF)dx=x1x2η(yFdxdyF)dx(2.8)
根据变分学基本引理 ( 1.2 ) \left(1.2\right) (1.2) ,自然得到
∂ F ∂ y − d d x ∂ F ∂ y ′ = 0 (2.9) \frac{\partial F}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime} = 0 \tag{2.9} yFdxdyF=0(2.9)

2.2、单方程单变量高次的欧拉方程的证明

实际上, ( 2.9 ) \left(2.9\right) (2.9) 很容易向高次情形推广。如果约定 d 0 d x 0 y = y \frac{\mathrm{d}^0}{\mathrm{d}x^0}y=y dx0d0y=y ( 2.9 ) \left(2.9\right) (2.9) 可以改写为
∑ k = 0 1 ( − 1 ) k ( d k d x k ∂ F ∂ y ( k ) ) = 0 (2.10) \sum_{k=0}^1{\left( -1 \right) ^k\left( \frac{\mathrm{d}^k}{\mathrm{d}x^k}\frac{\partial F}{\partial y^{\left( k \right)}} \right)}=0 \tag{2.10} k=01(1)k(dxkdky(k)F)=0(2.10)
为什么要写得这么复杂呢?这是为了方便后续的推广。

定理内容

设高阶泛函
I [ y ( ⋅ ) ] = ∫ x 1 x 2 F ( x , y , y ′ , y ′ ′ , ⋯   , y ( n ) ) d x (2.11) I\left[ y\left( \cdot \right) \right] = \int_{x_1}^{x_2} {F\left( x ,y ,y^\prime,y^{\prime\prime},\cdots,y^{\left( n \right)} \right)\mathrm{d}x} \tag{2.11} I[y()]=x1x2F(x,y,y,y,,y(n))dx(2.11)
其可取函数集为
Y 1 , 1 , n = { y ( x ) ∣ y ( x ) ∈ C [ x 1 , x 2 ] ( 2 n ) y ( k ) ( x 1 ) = y 1 ( k ) , y ( k ) ( x 2 ) = y 2 ( k ) , k = 0 , 1 , ⋯   , n − 1 } (2.12) \mathbb{Y}_{1,1,n}=\left\{ y\left( x \right) \left| \begin{array}{l} y\left( x \right) \in C_{\left[ x_1,x_2 \right]}^{\left( 2n \right)}\\ y^{\left( k \right)}\left( x_1 \right) =y_1^{\left( k \right)},y^{\left( k \right)}\left( x_2 \right) =y_2^{\left( k \right)}, k=0,1,\cdots , n-1\\ \end{array} \right. \right\} \tag{2.12} Y1,1,n={y(x)y(x)C[x1,x2](2n)y(k)(x1)=y1(k),y(k)(x2)=y2(k),k=0,1,,n1}(2.12)
Y ( x ) ∈ Y 1 , 1 , n Y\left(x\right) \in \mathbb{Y}_{1,1,n} Y(x)Y1,1,n 使泛函 ( 2.11 ) \left(2.11\right) (2.11) 取得极小值的必要条件是: Y ( x ) Y\left(x\right) Y(x) 是微分方程 ( 2.13 ) \left(2.13\right) (2.13) 的解
F y − d d x F y ′ + d 2 d x 2 F y ′ ′ + ⋯ + ( − 1 ) n d n d x n F y ( n ) = 0 (2.13) F_y-\frac{\mathrm{d}}{\mathrm{d}x}F_{y^\prime}+\frac{\mathrm{d}^2}{\mathrm{d}x^2}F_{y^{\prime\prime}}+\cdots+\left(-1\right)^n \frac{\mathrm{d}^n}{\mathrm{d}x^n}F_{y^{\left( n \right)}}=0 \tag{2.13} FydxdFy+dx2d2Fy++(1)ndxndnFy(n)=0(2.13)
或者用求和的形式记录之,则为
∑ k = 0 n ( − 1 ) k ( d k d x k ∂ F ∂ y ( k ) ) = 0 (2.14) \sum_{k=0}^{n}{\left( -1 \right) ^k\left( \frac{\mathrm{d}^k}{\mathrm{d}x^k}\frac{\partial F}{\partial y^{\left( k \right)}} \right)}=0 \tag{2.14} k=0n(1)k(dxkdky(k)F)=0(2.14)
其中 ∂ F ∂ y ( k ) = F y ( k ) \frac{\partial F}{\partial y^{\left( k \right)}} =F_{y^{\left( k \right)}} y(k)F=Fy(k)

定理的理解与证明

该证明的核心就在于将 η ( n ) \eta^{\left(n\right)} η(n) 转化为 η \eta η ,然后用变分学基本引理进行证明。

回忆一下: 1 1 1 阶情形的证明方式是进行 1 1 1 次分部积分。因此,我们不难想象 n n n 阶的证明也是基于 n n n 次分部积分。

我们不加证明(事实上,证明只需对函数进行 n n n 次分部积分即可,十分显明)地引入 n n n 次分部积分的引理——

η ( k ) ( x 1 ) = 0 , η ( k ) ( x 2 ) = 0 , k = 0 , 1 , ⋯   , n − 1 \eta^{\left( k \right)}\left( x_1 \right) =0,\eta^{\left( k \right)}\left( x_2 \right) =0, k=0,1,\cdots , n-1 η(k)(x1)=0,η(k)(x2)=0,k=0,1,,n1 ,则
∫ x 1 x 2 η ( n ) ∂ F ∂ y ( n ) d x = ( − 1 ) n ∫ x 1 x 2 η ( d n d x n ∂ F ∂ y ( n ) ) d x (2.15) \int_{x_1}^{x_2}{\eta ^{\left( n \right)}\frac{\partial F}{\partial y^{\left( n \right)}}\mathrm{d}x}=\left( -1 \right) ^n\int_{x_1}^{x_2}{\eta \left(\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y^{\left( n \right)}} \right)\mathrm{d}x} \tag{2.15} x1x2η(n)y(n)Fdx=(1)nx1x2η(dxndny(n)F)dx(2.15)
后续的证明仿照 ( 2.9 ) \left(2.9\right) (2.9) 其实就水到渠成了。

首先
[ d I ( Y + α η ) d α ] ∣ α = 0 = ∫ x 1 x 2 ( η ∂ F ( x , Y , Y ′ , ⋯   , Y ( n ) ) ∂ y + η ′ ∂ F ( x , Y , Y ′ ) ∂ y ′ , ⋯   , Y ( n ) ) d x = ∫ x 1 x 2 ( η ∂ F ∂ y + η ′ ∂ F ∂ y ′ + ⋯ + + η ( n ) ∂ F ∂ y ( n ) ) d x (2.16) \begin{aligned} \left. \left[ \frac{\mathrm{d}I\left( Y+\alpha \eta \right)}{\mathrm{d}\alpha} \right] \right|_{\alpha =0}&=\int_{x_1}^{x_2}{\left( \eta \frac{\partial F\left( x,Y,Y^\prime,\cdots,Y^{\left(n\right)} \right)}{\partial y}+\eta ^\prime\frac{\partial F\left( x,Y,Y^\prime \right)}{\partial y^\prime},\cdots,Y^{\left(n\right)} \right) \mathrm{d}x}\\ &=\int_{x_1}^{x_2}{\left( \eta \frac{\partial F}{\partial y}+\eta ^\prime\frac{\partial F}{\partial y^\prime}+\cdots++\eta ^{\left(n\right)}\frac{\partial F}{\partial y^{\left(n\right)}} \right) \mathrm{d}x}\\ \end{aligned} \tag{2.16} [dαdI(Y+αη)]α=0=x1x2(ηyF(x,Y,Y,,Y(n))+ηyF(x,Y,Y),,Y(n))dx=x1x2(ηyF+ηyF+++η(n)y(n)F)dx(2.16)

应用分部积分引理 ( 1.2 ) \left(1.2\right) (1.2) 可以得到

[ d I ( Y + α η ) d α ] ∣ α = 0 = ∫ x 1 x 2 ( η ∂ F ∂ y + η ′ ∂ F ∂ y ′ + ⋯ + η ( n ) ∂ F ∂ y ( n ) ) d x = ∫ x 1 x 2 η ( ∂ F ∂ y − d d x ∂ F ∂ y ′ + ⋯ + ( − 1 ) n d n d x n ∂ F ∂ y ( n ) ) d x (2.17) \begin{aligned} \left. \left[ \frac{\mathrm{d}I\left( Y+\alpha \eta \right)}{\mathrm{d}\alpha} \right] \right|_{\alpha =0}&=\int_{x_1}^{x_2}{\left( \eta \frac{\partial F}{\partial y}+\eta ^\prime\frac{\partial F}{\partial y^\prime}+\cdots+\eta ^{\left(n\right)}\frac{\partial F}{\partial y^{\left(n\right)}} \right) \mathrm{d}x}\\ &=\int_{x_1}^{x_2}{\eta \left( \frac{\partial F}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime}+\cdots+\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y^{\left(n\right)}} \right) \mathrm{d}x}\\ \end{aligned} \tag{2.17} [dαdI(Y+αη)]α=0=x1x2(ηyF+ηyF++η(n)y(n)F)dx=x1x2η(yFdxdyF++(1)ndxndny(n)F)dx(2.17)
根据变分学基本引理 ( 1.2 ) \left(1.2\right) (1.2) ,自然得到
∂ F ∂ y − d d x ∂ F ∂ y ′ + ⋯ + ( − 1 ) n d n d x n ∂ F ∂ y ( n ) = 0 (2.18) \frac{\partial F}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime}+\cdots+\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y^{\left(n\right)}} = 0 \tag{2.18} yFdxdyF++(1)ndxndny(n)F=0(2.18)

2.3、单方程单变量习题——最短距离线与最速降线

最短距离线问题的变分求解

在本文开篇,我们用了一个脍炙人口的问题来引入。我们考虑过定点 ( 0 , 0 ) \left(0,0\right) (0,0) ( 1 , 2 ) \left(1,2\right) (1,2) 的全体曲线,求满足条件的长度最短曲线

显然地,根据我们的直觉,连接两者的线段即为所求,但这一直觉并不能构成一个证明。有人倾向于这一结论应当作为一个公理,不过通过变分的方法,我们至少可以证明:针对二次可微曲线而言,连接两者的线段即为长度最短曲线(当然,这或许涉嫌循环论证,因为微积分的相关公理体系中或许蕴含了「连接两者的线段即为长度最短曲线」这一条件)。

我们知道弧长表达式为
I [ y ( ⋅ ) ] = ∫ 0 1 F ( x , y , y ′ ) d x = ∫ 0 1 1 + ( y ′ ) 2 d x (2.19) I\left[ y\left( \cdot \right) \right] = \int_0^1 {F\left( x ,y ,y^\prime \right)\mathrm{d}x} = \int_0^1 {\sqrt{1+\left(y^{\prime}\right)^2}\mathrm{d}x}\tag{2.19} I[y()]=01F(x,y,y)dx=011+(y)2 dx(2.19)
那么极值曲线应当是什么呢?利用 ( 2.9 ) \left(2.9\right) (2.9) 式,我们令 F ( x , y , y ′ ) = 1 + ( y ′ ) 2 F\left( x ,y ,y^\prime \right)=\sqrt{1+\left(y^{\prime}\right)^2} F(x,y,y)=1+(y)2 ,我们写出对应的欧拉方程——
∂ F ∂ y − d d x ∂ F ∂ y ′ = − d d x y ′ 1 + ( y ′ ) 2 = y ′ ′ ( 1 + ( y ′ ) 2 ) − ( y ′ ) 2 ( 1 + ( y ′ ) 2 ) 3 / 2 = 0 (2.20) \frac{\partial F}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime} = -\frac{\mathrm{d}}{\mathrm{d}x}\frac{y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^2}} = \frac{y^{\prime\prime}\left( 1+\left(y^{\prime}\right)^2 \right)-\left(y^{\prime}\right)^2}{\left( 1+\left(y^{\prime}\right)^2 \right)^{3/2}} = 0 \tag{2.20} yFdxdyF=dxd1+(y)2 y=(1+(y)2)3/2y(1+(y)2)(y)2=0(2.20)
解出 y = C 1 x + C 2 y=C_1 x+C_2 y=C1x+C2 ,也就是全体一次函数,结合边界条件,可知:连接两者的线段即为长度最短曲线

最速降线问题的变分求解

还有一个在数学史上经典的问题:给定两点 ( 0 , 0 ) \left(0,0\right) (0,0) ( x 2 , y 2 ) \left(x_2,y_2\right) (x2,y2) 。从 ( 0 , 0 ) \left(0,0\right) (0,0) 处无初速度地释放一个小球,并用一个光滑曲面 y = y ( x ) y=y\left(x\right) y=y(x) 连接这两点,求什么样的曲面会使得到达 ( x 2 , y 2 ) \left(x_2,y_2\right) (x2,y2) 时间最短。

这一问题首先由伯努利提出。此后,牛顿、欧拉等著名大牛分别给出了他们的天秀解法,本文提到的变分法正是其中一个。因此,将最速降线问题作为变分法的例子,实在是再合适不过了

我们考虑到 d s = v d t \mathrm{d} s=v\mathrm{d} t ds=vdt ,其中

  • 根据弧长公式 d s = 1 + ( y ′ ) 2 d x \mathrm{d} s=\sqrt{1+\left(y^{\prime}\right)^2} \mathrm{d} x ds=1+(y)2 dx
  • 根据能量守恒定律 v 2 = 2 g y v^2=2gy v2=2gy ,有 v = 2 g y v=\sqrt{2gy} v=2gy

因此, d t = d s v = 1 + ( y ′ ) 2 2 g y d x \mathrm{d} t=\frac{\mathrm{d} s}{v} =\frac{\sqrt{1+\left(y^{\prime}\right)^2} }{\sqrt{2gy}}\mathrm{d} x dt=vds=2gy 1+(y)2 dx ,对两端积分,可构造出泛函
T [ y ( ⋅ ) ] = ∫ 0 x 2 F ( x , y , y ′ ) d x = ∫ 0 x 2 1 + ( y ′ ) 2 y d x (2.19) T\left[ y\left( \cdot \right) \right] = \int_0^{x_2} {F\left( x ,y ,y^\prime \right)\mathrm{d}x} = \int_0^{x_2} {\frac{\sqrt{1+\left(y^{\prime}\right)^2}}{\sqrt{y}} \mathrm{d}x}\tag{2.19} T[y()]=0x2F(x,y,y)dx=0x2y 1+(y)2 dx(2.19)
那么极值曲线应当是什么呢?利用 ( 2.9 ) \left(2.9\right) (2.9) 式,我们令 F ( x , y , y ′ ) = 1 2 g 1 + ( y ′ ) 2 y F\left( x ,y ,y^\prime \right)=\frac{1}{\sqrt{2g}}\frac{\sqrt{1+\left(y^{\prime}\right)^2}}{\sqrt{y}} F(x,y,y)=2g 1y 1+(y)2 ,我们写出对应的欧拉方程——
∂ F ∂ y − d d x ∂ F ∂ y ′ = 1 2 g ( − 1 + ( y ′ ) 2 2 y y − d d x y ′ y 1 + ( y ′ ) 2 ) = 0 (2.20) \frac{\partial F}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime} = \frac{1}{\sqrt{2g}}\left( -\frac{\sqrt{1+\left(y^{\prime}\right)^2}}{2y\sqrt{y}}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{y^{\prime}}{\sqrt{y}\sqrt{1+\left(y^{\prime}\right)^2}} \right) = 0 \tag{2.20} yFdxdyF=2g 12yy 1+(y)2 dxdy 1+(y)2 y=0(2.20)
经过化简可得
2 y ′ y ′ ′ 1 + ( y ′ ) 2 + y ′ y = 0 (2.21) \frac{2y^\prime y^{\prime\prime}}{1+\left(y^{\prime}\right)^2}+\frac{y^\prime}{y}=0 \tag{2.21} 1+(y)22yy+yy=0(2.21)
d x \mathrm{d}x dx 积分得
∫ ( 2 y ′ y ′ ′ 1 + ( y ′ ) 2 + y ′ y ) d x = ∫ ( d ( y ′ ) 2 1 + ( y ′ ) 2 + d ln ⁡ y ) = c o n s t (2.22) \int{\left( \frac{2y^\prime y^{\prime\prime}}{1+\left(y^{\prime}\right)^2}+\frac{y^\prime}{y}\right) \mathrm{d}x}=\int{\left( \frac{\mathrm{d}\left(y^{\prime}\right)^2}{1+\left(y^{\prime}\right)^2}+\mathrm{d}\ln y \right) }=\mathrm{const} \tag{2.22} (1+(y)22yy+yy)dx=(1+(y)2d(y)2+dlny)=const(2.22)
经过简单的化简,得到
y [ 1 + ( y ′ ) 2 ] = C ⇒ y C − y d y = ± d x (2.23) y\left[1+\left(y^{\prime}\right)^2\right] = C \Rightarrow \sqrt{\frac{y}{C-y}}\mathrm{d}y=\pm \mathrm{d}x \tag{2.23} y[1+(y)2]=CCyy dy=±dx(2.23)
y = C 2 ( 1 − cos ⁡ u ) ⇒ d y = C 2 sin ⁡ u d u y=\frac{C}{2} \left(1-\cos u\right)\Rightarrow \mathrm{d}y=\frac{C}{2} \sin u\mathrm{d}u y=2C(1cosu)dy=2Csinudu ,代入可得
C 2 ( 1 − cos ⁡ u ) d u = ± d x ⇒ x = ± C 2 ( u − sin ⁡ u ) (2.24) \frac{C}{2} \left(1-\cos u\right)\mathrm{d}u = \pm \mathrm{d}x \Rightarrow x=\pm \frac{C}{2} \left( u-\sin u \right) \tag{2.24} 2C(1cosu)du=±dxx=±2C(usinu)(2.24)
这就证明了最速降线必为滚轮线。

3、多方程单变量欧拉方程

在实际问题中,我们可能遇到多个独立变元一起出现的约束极值问题,例如给出两个变元 y 1 ( x ) y_1\left( x \right) y1(x) y 2 ( x ) y_2\left( x \right) y2(x) ,并令 F = y 1 ′ 2 + y 2 ′ 2 + 2 y 1 y 2 F=y_1^{\prime2}+y_2^{\prime2}+2y_1y_2 F=y12+y22+2y1y2 ,求泛函 I [ y 1 ( ⋅ ) , y 2 ( ⋅ ) ] = ∫ x 1 x 2 F ( x , y 1 , y 2 , y 1 ′ , y 2 ′ ) d x I\left[ y_1\left(\cdot\right),y_2\left(\cdot\right) \right]=\int_{x_1}^{x_2}{F\left( x,y_1,y_2,y_1^\prime,y_2^\prime \right) \mathrm{d} x} I[y1(),y2()]=x1x2F(x,y1,y2,y1,y2)dx 的极值。

3.1、两方程单变量一次的欧拉方程

先考虑两方程情形,令 y k = Y k + α η k , k = 1 , 2 y_k =Y_k+\alpha \eta_k, k=1,2 yk=Yk+αηk,k=1,2 ,并令
Φ ( α ) = I [ y 1 ( ⋅ ) , y 2 ( ⋅ ) ] = ∫ x 1 x 2 F ( x , Y 1 + α η 1 , Y 2 + α η 2 , Y 1 ′ + α η 1 ′ , Y 2 ′ + α η 2 ′ ) d x (3.1) \begin{aligned} \varPhi \left( \alpha \right) &=I\left[ y_1\left( \cdot \right) ,y_2\left( \cdot \right) \right]\\ &=\int_{x_1}^{x_2}{F\left( x,Y_1+\alpha \eta _1,Y_2+\alpha \eta _2,Y_{1}^{\prime}+\alpha \eta _{1}^{\prime},Y_{2}^{\prime}+\alpha \eta _{2}^{\prime} \right) \mathrm{d}x}\\ \end{aligned} \tag{3.1} Φ(α)=I[y1(),y2()]=x1x2F(x,Y1+αη1,Y2+αη2,Y1+αη1,Y2+αη2)dx(3.1)
则函数组 Y k Y_k Yk 使得泛函取得极值的必要条件为 Φ ′ ( 0 ) = 0 \varPhi^\prime \left( 0 \right) = 0 Φ(0)=0 ,即
∫ x 1 x 2 ( η 1 ∂ F ∂ y 1 + η 1 ′ ∂ F ∂ y 1 ′ ) d x + ∫ x 1 x 2 ( η 2 ∂ F ∂ y 2 + η 2 ′ ∂ F ∂ y 2 ′ ) d x = 0 (3.2) \int_{x_1}^{x_2}{ \left( \eta _1\frac{\partial F}{\partial y_1}+\eta _{1}^{\prime}\frac{\partial F}{\partial y_{1}^{\prime}} \right) \mathrm{d}x}+\int_{x_1}^{x_2}{ \left( \eta _2\frac{\partial F}{\partial y_2}+\eta _{2}^{\prime}\frac{\partial F}{\partial y_{2}^{\prime}} \right) \mathrm{d}x}=0 \tag{3.2} x1x2(η1y1F+η1y1F)dx+x1x2(η2y2F+η2y2F)dx=0(3.2)
应用分部积分引理 ( 2.15 ) \left(2.15\right) (2.15) 可以得到
∫ x 1 x 2 η 1 ( ∂ F ∂ y 1 − d d x ∂ F ∂ y 1 ′ ) d x + ∫ x 1 x 2 η 2 ( ∂ F ∂ y 2 − d d x ∂ F ∂ y 2 ′ ) d x = 0 (3.3) \int_{x_1}^{x_2}{ \eta _1\left( \frac{\partial F}{\partial y_1}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y_{1}^{\prime}} \right) \mathrm{d}x}+\int_{x_1}^{x_2}{ \eta _2\left( \frac{\partial F}{\partial y_2}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y_{2}^{\prime}} \right) \mathrm{d}x}=0 \tag{3.3} x1x2η1(y1Fdxdy1F)dx+x1x2η2(y2Fdxdy2F)dx=0(3.3)
根据变分学基本引理 ( 1.2 ) \left(1.2\right) (1.2) ,以及 η 1 , η 2 \eta_1, \eta_2 η1,η2 的任意性(如 η 2 = 0 \eta_2=0 η2=0 ,此时就退化为了关于 η 1 \eta_1 η1 的单方程,然后应用变分学基本引理),自然得到「两方程单变量一次的欧拉方程」,即如下方程组
{ ∂ F ∂ y 1 − d d x ∂ F ∂ y 1 ′ = 0 ∂ F ∂ y 2 − d d x ∂ F ∂ y 2 ′ = 0 (3.4) \begin{cases} \displaystyle \frac{\partial F}{\partial y_1}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y_{1}^{'}}=0\\ \displaystyle \frac{\partial F}{\partial y_2}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y_{2}^{'}}=0\\ \end{cases} \tag{3.4} y1Fdxdy1F=0y2Fdxdy2F=0(3.4)
也就是说,对于两方程情形,对应泛函取到极值的必要条件为 ( 3.4 ) \left(3.4\right) (3.4)

3.2、多方程单变量高次的欧拉方程

显然, ( 3.4 ) \left(3.4\right) (3.4) 可以被自然地推广到多方程高次的情形。

先考虑 M M M 个方程的情形,令 y m = Y m + α η m , k = 1 , 2 , ⋯   , M y_m =Y_m+\alpha \eta_m, k=1,2,\cdots , M ym=Ym+αηm,k=1,2,,M ,其中第 m m m 个方程涉及的最高阶导数为 N m N_m Nm 阶,此时
Φ ( α ) = I [ y 1 ( ⋅ ) , ⋯   , y M ( ⋅ ) ] = ∫ x 1 x 2 F ( x , Y 1 + α η 1 , ⋯   , Y 1 ( N 1 ) + α η 1 ( N 1 ) , ⋯   , Y M + α η M , ⋯   , Y M ( N M ) + α η M ( N M ) ) d x (3.5) \begin{aligned} \varPhi \left( \alpha \right) &=I\left[ y_1\left( \cdot \right) ,\cdots ,y_M\left( \cdot \right) \right]\\ &=\int_{x_1}^{x_2}{F\left( x,Y_1+\alpha \eta _1,\cdots ,Y_{1}^{\left( N_1 \right)}+\alpha \eta _{1}^{\left( N_1 \right)},\cdots ,Y_M+\alpha \eta _M,\cdots ,Y_{M}^{\left( N_M \right)}+\alpha \eta _{M}^{\left( N_M \right)} \right) \mathrm{d}x}\\ \end{aligned} \tag{3.5} Φ(α)=I[y1(),,yM()]=x1x2F(x,Y1+αη1,,Y1(N1)+αη1(N1),,YM+αηM,,YM(NM)+αηM(NM))dx(3.5)
则函数组 Y k Y_k Yk 使得泛函取得极值的必要条件为 Φ ′ ( 0 ) = 0 \varPhi^\prime \left( 0 \right) = 0 Φ(0)=0 ,即
∑ m = 1 M ∫ x 1 x 2 ( ∑ n = 0 N m η m ( n ) ∂ F ∂ y m ( n ) ) d x = 0 (3.6) \sum_{m=1}^M{\int_{x_1}^{x_2}{\left( \sum_{n=0}^{N_m}{\eta _{m}^{\left( n \right)}\frac{\partial F}{\partial y_{m}^{\left( n \right)}}} \right) \mathrm{d}x}}=0 \tag{3.6} m=1Mx1x2(n=0Nmηm(n)ym(n)F)dx=0(3.6)
对里面那一坨积分应用分部积分引理 ( 2.15 ) \left(2.15\right) (2.15) 可以得到
∑ m = 1 M ∫ x 1 x 2 η m ( ∑ n = 0 N m ( − 1 ) n d n d x n ∂ F ∂ y m ( n ) ) d x = 0 (3.7) \sum_{m=1}^M{\int_{x_1}^{x_2}{\eta _m\left( \sum_{n=0}^{N_m}{\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y_{m}^{\left( n \right)}}} \right) \mathrm{d}x}}=0 \tag{3.7} m=1Mx1x2ηm(n=0Nm(1)ndxndnym(n)F)dx=0(3.7)
根据变分学基本引理 ( 1.2 ) \left(1.2\right) (1.2) ,以及 η 1 , η 2 \eta_1, \eta_2 η1,η2 的任意性(如 η 2 , η 3 , ⋯   , η M = 0 \eta_2,\eta_3,\cdots,\eta_M=0 η2,η3,,ηM=0 ,此时就退化为了关于 η 1 \eta_1 η1 的单方程,然后应用变分学基本引理),自然得到「多方程单变量高次的欧拉方程」,即如下方程组
{ ∑ n = 0 N 1 ( − 1 ) n d n d x n ∂ F ∂ y 1 ( n ) = 0 ∑ n = 0 N 2 ( − 1 ) n d n d x n ∂ F ∂ y 2 ( n ) = 0 ⋮ ∑ n = 0 N M ( − 1 ) n d n d x n ∂ F ∂ y M ( n ) = 0 (3.8) \begin{cases} \displaystyle \sum_{n=0}^{N_1}{\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y_{1}^{\left( n \right)}}}=0\\ \displaystyle \sum_{n=0}^{N_2}{\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y_{2}^{\left( n \right)}}}=0\\ \vdots\\ \displaystyle \sum_{n=0}^{N_M}{\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y_{M}^{\left( n \right)}}}=0\\ \end{cases} \tag{3.8} n=0N1(1)ndxndny1(n)F=0n=0N2(1)ndxndny2(n)F=0n=0NM(1)ndxndnyM(n)F=0(3.8)
也就是说,对于多方程高次情形,对应泛函取到极值的必要条件为 ( 3.8 ) \left(3.8\right) (3.8)

4、多方程多变量欧拉方程

通常来说,因为我们现实世界是三维的,所以我们会遇到多变量的函数。例如电场强度函数可能就是一个三维 ( x , y , z ) \left(x,y,z\right) (x,y,z) 函数,也就是三变量的函数。对于它的极值问题,我们依然可以类似地方法进行求解。

4.1、分部积分向高维的推广

我们将 η ′ \eta^\prime η 转化为 η \eta η 中用到了一个重要的公式——分部积分公式。而分部积分公式基于「牛顿莱布尼茨公式」。而接下来我们要处理的函数,将是多变量的函数,此时我们就需要一个「高维的牛顿莱布尼茨公式」。幸运的是,我们高数学的「格林公式」和「高斯公式」正是「牛顿莱布尼茨公式」向高维的推广,它们的推广被称为「广义斯托克斯公式」。如果有对「广义斯托克斯公式」感兴趣的同学,可以看我的文章 从「广义斯托克斯公式」结合「外微分公式」导出「牛顿-莱布尼茨公式」、「格林公式」、「高斯公式」、「斯托克斯公式」_MamiyaHasaki的博客-CSDN博客

假设函数 η ( x , y ) \eta\left(x,y\right) η(x,y) 定义在区域 D D D 上,区域 D D D 的边界 ∂ D = L \partial D=L D=L ,并满足边界条件: η ∣ L = 0 \eta|_L =0 ηL=0

高数讲的格林公式是——
∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ L P d x + Q d y (4.1) \iint_D{\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) \mathrm{d}x\mathrm{d}y}=\oint_{L}{P\mathrm{d}x+ Q\mathrm{d}y} \tag{4.1} D(xQyP)dxdy=LPdx+Qdy(4.1)
Q = η ⋅ f , P = 0 Q=\eta \cdot f, P=0 Q=ηf,P=0 代入,考虑到 η ∣ L = 0 \eta|_L =0 ηL=0 ,得
∬ D ∂ ( η ⋅ f ) ∂ x d x d y = ∮ L η ( f d y ) = 0 (4.2) \iint_D{\frac{\partial \left( \eta \cdot f \right)}{\partial x}\mathrm{d}x\mathrm{d}y}=\oint_L{\eta \left( f\mathrm{d}y \right)}=0 \tag{4.2} Dx(ηf)dxdy=Lη(fdy)=0(4.2)

∬ D ( ∂ η ∂ x ) f ⋅ d x d y = − ∬ D η ( ∂ f ∂ x ) ⋅ d x d y (4.3) \iint_D{\left( \frac{\partial \eta}{\partial x} \right) f\cdot \mathrm{d}x\mathrm{d}y}=-\iint_D{\eta \left( \frac{\partial f}{\partial x} \right) \cdot \mathrm{d}x\mathrm{d}y} \tag{4.3} D(xη)fdxdy=Dη(xf)dxdy(4.3)
如果我们假设 η ∣ L \eta|_L ηL 满足 n − 1 n-1 n1 次边界条件,即 η ∣ L = 0 , ∂ η ∂ x ∣ L = 0 , ⋯   , , ∂ n − 1 η ∂ x n − 1 ∣ L = 0 \eta|_L =0,\left.\frac{\partial \eta}{\partial x}\right|_L =0,\cdots ,,\left.\frac{\partial^{n-1} \eta}{\partial x^{n-1}}\right|_L =0 ηL=0,xηL=0,,,xn1n1ηL=0 ,那么就可以得到二维的 n n n 次分部积分公式
∬ D ( ∂ n η ∂ x n ) f ⋅ d x d y = ( − 1 ) n ∬ D η ( ∂ n f ∂ x n ) ⋅ d x d y (4.4) \iint_D{\left( \frac{\partial ^n\eta}{\partial x^n} \right) f\cdot \mathrm{d}x\mathrm{d}y}=\left( -1 \right) ^n\iint_D{\eta \left( \frac{\partial ^nf}{\partial x^n} \right) \cdot \mathrm{d}x\mathrm{d}y} \tag{4.4} D(xnnη)fdxdy=(1)nDη(xnnf)dxdy(4.4)
同理,令 P = − η ⋅ f , Q = 0 P=-\eta \cdot f, Q=0 P=ηf,Q=0 代入
∬ D ( ∂ n η ∂ y n ) f ⋅ d x d y = ( − 1 ) n ∬ D η ( ∂ n f ∂ y n ) ⋅ d x d y (4.5) \iint_D{\left( \frac{\partial ^n\eta}{\partial y^n} \right) f\cdot \mathrm{d}x\mathrm{d}y}=\left( -1 \right) ^n\iint_D{\eta \left( \frac{\partial ^nf}{\partial y^n} \right) \cdot \mathrm{d}x\mathrm{d}y} \tag{4.5} D(ynnη)fdxdy=(1)nDη(ynnf)dxdy(4.5)
当然,三维情形也是同理,我们采用高斯公式
∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V = ∯ ∂ Ω ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S (4.6) \iiint_{\Omega}{\left( \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} \right) \mathrm{d}V}=\oiint_{\partial \Omega}{\left( P\cos \alpha +Q\cos \beta +R\cos \gamma \right) \mathrm{d}S} \tag{4.6} Ω(xP+yQ+zR)dV= Ω(Pcosα+Qcosβ+Rcosγ)dS(4.6)
考虑区域 Ω \Omega Ω 上的边界条件为 η ∣ ∂ Ω = 0 \eta|_{\partial \Omega}=0 ηΩ=0 ,代入 P = η ⋅ f , Q = 0 , R = 0 P=\eta \cdot f,Q=0,R=0 P=ηf,Q=0,R=0 ,等式右端为 0 0 0
∭ Ω ∂ ( η ⋅ f ) ∂ x d V = 0 (4.7) \iiint_{\Omega}{\frac{\partial \left( \eta \cdot f \right)}{\partial x}\mathrm{d}V}=0 \tag{4.7} Ωx(ηf)dV=0(4.7)
进行分部积分得到
∭ Ω ( ∂ η ∂ x ) f d V = − ∭ Ω η ( ∂ f ∂ x ) d V (4.8) \iiint_{\Omega}{\left( \frac{\partial \eta}{\partial x} \right) f\mathrm{d}V}=-\iiint_{\Omega}{\eta \left( \frac{\partial f}{\partial x} \right) \mathrm{d}V} \tag{4.8} Ω(xη)fdV=Ωη(xf)dV(4.8)
仿照格林公式的方式,可以推广到每个维度的 n n n 次分部积分,这里就不赘述了。

因为二维、三维的情形已经够用了,所以下面的内容没有必要看。但我个人想要进行一个任意维度的证明,所以还是写了。建议不知道广义斯托克斯公式的同学直接跳过,或者先行阅读我的文章 从「广义斯托克斯公式」结合「外微分公式」导出「牛顿-莱布尼茨公式」、「格林公式」、「高斯公式」、「斯托克斯公式」_MamiyaHasaki的博客-CSDN博客

当然,我们可以将其自然地推广到 M M M 维情形,考虑广义斯托克斯公式
∫ Ω d ω = ∫ ∂ Ω ω (4.9) \int_{\Omega}{\mathrm{d}\omega}=\int_{\partial \Omega}{\omega} \tag{4.9} Ωdω=Ωω(4.9)
M M M 维函数 f = f ( x 1 , ⋯   , x M ) f=f\left( x_1, \cdots ,x_M\right) f=f(x1,,xM) ,取 ω \omega ω M − 1 M-1 M1 维的外微分形式
ω = P 1 ( d x 2 ∧ ⋯ ∧ d x M ) + ⋯ + P m ( d x m + 1 ∧ ⋯ ∧ d x M ∧ d x 1 ∧ ⋯ ∧ d x m − 1 ) + ⋯ + P M ( d x 1 ∧ ⋯ ∧ d x M − 1 ) (4.10) \begin{aligned} \omega &=P_1\left( \mathrm{d}x_2\land \cdots \land \mathrm{d}x_M \right)\\ &+\cdots\\ &+P_m\left( \mathrm{d}x_{m+1}\land \cdots \land \mathrm{d}x_M\land \mathrm{d}x_1\land \cdots \land \mathrm{d}x_{m-1} \right)\\ &+\cdots\\ &+P_M\left( \mathrm{d}x_1\land \cdots \land \mathrm{d}x_{M-1} \right)\\ \end{aligned} \tag{4.10} ω=P1(dx2dxM)++Pm(dxm+1dxMdx1dxm1)++PM(dx1dxM1)(4.10)
则它的微分 d ω \mathrm{d}\omega dω
d ω = ( ∂ P 1 ∂ x 1 + ( − 1 ) M − 1 ∂ P 2 ∂ x 2 + ∂ P 3 ∂ x 3 + ⋯ + ( − 1 ) M − 1 ∂ P M ∂ x M ) ( d x 1 ∧ ⋯ ∧ d x M ) = ( ∑ m = 1 M ( − 1 ) ( M − 1 ) ( m − 1 ) ∂ P m ∂ x m ) ( d x 1 ∧ ⋯ ∧ d x M ) (4.11) \begin{aligned} \mathrm{d}\omega &=\left( \frac{\partial P_1}{\partial x_1}+\left( -1 \right) ^{M-1}\frac{\partial P_2}{\partial x_2}+\frac{\partial P_3}{\partial x_3}+\cdots +\left( -1 \right) ^{M-1}\frac{\partial P_M}{\partial x_M} \right) \left( \mathrm{d}x_1\land \cdots \land \mathrm{d}x_M \right)\\ &=\left( \sum_{m=1}^M{\left( -1 \right) ^{\left( M-1 \right) \left( m-1 \right)}\frac{\partial P_m}{\partial x_m}} \right) \left( \mathrm{d}x_1\land \cdots \land \mathrm{d}x_M \right)\\ \end{aligned} \tag{4.11} dω=(x1P1+(1)M1x2P2+x3P3++(1)M1xMPM)(dx1dxM)=(m=1M(1)(M1)(m1)xmPm)(dx1dxM)(4.11)
Q m = ( − 1 ) ( M − 1 ) ( m − 1 ) P m Q_m=\left( -1 \right) ^{\left( M-1 \right) \left( m-1 \right)}P_m Qm=(1)(M1)(m1)Pm ,此时 d ω = ( ∂ Q 1 ∂ x 1 + ⋯ + ∂ Q M ∂ x M ) ( d x 1 ∧ ⋯ ∧ d x M ) \mathrm{d}\omega=\left( \frac{\partial Q_1}{\partial x_1}+\cdots +\frac{\partial Q_M}{\partial x_M} \right) \left( \mathrm{d}x_1\land \cdots \land \mathrm{d}x_M \right) dω=(x1Q1++xMQM)(dx1dxM) ,结合 ( 4.9 ) \left(4.9\right) (4.9) ( 4.10 ) \left(4.10\right) (4.10) ( 4.11 ) \left(4.11\right) (4.11) 得到 M M M 维的广义斯托克斯公式
∫ Ω ( ∑ m = 1 M ∂ Q m ∂ x m ) ( d x 1 ⋯ d x M ) = ∫ ∂ Ω P 1 ( d x 2 ⋯ d x M ) + ⋯ P M ( d x 1 ⋯ d x M − 1 ) (4.12) \int_{\Omega}{\left( \sum_{m=1}^M{\frac{\partial Q_m}{\partial x_m}} \right) \left( \mathrm{d}x_1\cdots \mathrm{d}x_M \right)}=\int_{\partial \Omega}{P_1\left( \mathrm{d}x_2\cdots \mathrm{d}x_M \right) +\cdots P_M\left( \mathrm{d}x_1\cdots \mathrm{d}x_{M-1} \right)} \tag{4.12} Ω(m=1MxmQm)(dx1dxM)=ΩP1(dx2dxM)+PM(dx1dxM1)(4.12)
Q m = ( − 1 ) ( M − 1 ) ( m − 1 ) P m = η ⋅ f Q_m =\left( -1 \right) ^{\left( M-1 \right) \left( m-1 \right)}P_m=\eta \cdot f Qm=(1)(M1)(m1)Pm=ηf ,其余为 P k = 0 , k ≠ m P_k=0, k\neq m Pk=0,k=m ,得到
∫ Ω ∂ ( η ⋅ f ) ∂ x m ( d x 1 ⋯ d x M ) = ∫ ∂ Ω η ( f ⋅ d x m + 1 ⋯ d x M d x 1 ⋯ d x m − 1 ) \int_{\Omega}{\frac{\partial \left( \eta \cdot f \right)}{\partial x_m}\left( \mathrm{d}x_1\cdots \mathrm{d}x_M \right)}=\int_{\partial \Omega}{\eta \left( f\cdot \mathrm{d}x_{m+1}\cdots \mathrm{d}x_M\mathrm{d}x_1\cdots \mathrm{d}x_{m-1} \right)} Ωxm(ηf)(dx1dxM)=Ωη(fdxm+1dxMdx1dxm1)
如果我们假设 η ∣ ∂ Ω \eta|_{\partial \Omega} ηΩ 满足 n − 1 n-1 n1 次边界条件,即 η ∣ ∂ Ω = 0 , ∂ η ∂ x ∣ ∂ Ω = 0 , ⋯   , , ∂ n − 1 η ∂ x n − 1 ∣ ∂ Ω = 0 \eta|_{\partial \Omega} =0,\left.\frac{\partial \eta}{\partial x}\right|_{\partial \Omega} =0,\cdots ,,\left.\frac{\partial^{n-1} \eta}{\partial x^{n-1}}\right|_{\partial \Omega} =0 ηΩ=0,xηΩ=0,,,xn1n1ηΩ=0 ,等式右端 ∫ ∂ Ω \int_{\partial \Omega} Ω 项为 0 0 0 ,那么就可以得到 M M M 维的 n n n 次分部积分公式
∫ Ω ( ∂ n η ∂ ( x m ) n ) f ⋅ d x 1 ⋯ d x M = ( − 1 ) n ∫ Ω η ( ∂ n f ∂ ( x m ) n ) ⋅ d x 1 ⋯ d x M (4.13) \int_{\Omega}{\left( \frac{\partial ^n\eta}{\partial \left( x_m \right) ^n} \right) f\cdot \mathrm{d}x_1\cdots \mathrm{d}x_M}=\left( -1 \right) ^n\int_{\Omega}{\eta \left( \frac{\partial ^nf}{\partial \left( x_m \right) ^n} \right) \cdot \mathrm{d}x_1\cdots \mathrm{d}x_M} \tag{4.13} Ω((xm)nnη)fdx1dxM=(1)nΩη((xm)nnf)dx1dxM(4.13)

4.2、单方程两变量一次的欧拉方程

定理内容

设多元泛函
I [ u ( ⋅ , ⋅ ) ] = ∬ D F ( x , y , u , u x , u y ) d x d y (4.14) I\left[ u\left( \cdot, \cdot \right) \right] = \iint_{D} {F\left( x ,y ,u,u_x,u_y \right)\mathrm{d}x\mathrm{d}y} \tag{4.14} I[u(,)]=DF(x,y,u,ux,uy)dxdy(4.14)
其可取函数集为
Y 1 , 2 , 1 = { y ( x , y ) ∣ u ( x , y ) ∈ C D ( 2 ) u ∣ ∂ D = f ( M ) } (4.15) \mathbb{Y}_{1,2,1}=\left\{ y\left( x,y \right) \left| \begin{array}{l} u\left( x,y \right) \in C_{D}^{\left(2\right)}\\ u|_{\partial D}=f\left( M \right)\\ \end{array} \right. \right\} \tag{4.15} Y1,2,1={y(x,y)u(x,y)CD(2)uD=f(M)}(4.15)
其中 f ( M ) f\left(M\right) f(M) 是一个给定的已知函数,也就是边界条件。 u ( x , y ) ∈ Y 1 , 2 , 1 u\left(x,y\right) \in \mathbb{Y}_{1,2,1} u(x,y)Y1,2,1 使泛函 ( 4.14 ) \left(4.14\right) (4.14) 取得极小值的必要条件是:
F u − ∂ ∂ x F u x − ∂ ∂ y F u y = 0 (4.16) F_u-\frac{\partial}{\partial x}F_{u_x}-\frac{\partial}{\partial y}F_{u_y}=0 \tag{4.16} FuxFuxyFuy=0(4.16)

定理的理解与证明


Φ ( α ) = ∬ D F ( x , y , U , U x + α η x , U y + α η y ) d x d y (4.17) \varPhi \left( \alpha \right) =\iint_D{F\left( x,y,U,U_x+\alpha \eta _x,U_y+\alpha \eta _y \right) \mathrm{d}x\mathrm{d}y} \tag{4.17} Φ(α)=DF(x,y,U,Ux+αηx,Uy+αηy)dxdy(4.17)

Φ ′ ( 0 ) = ∬ D ( η F u + η x F u x + η y F u y ) d x d y (4.18) \varPhi ^\prime\left( 0 \right) =\iint_D{\left( \eta F_u+\eta _xF_{u_x}+\eta _yF_{u_y} \right) \mathrm{d}x\mathrm{d}y} \tag{4.18} Φ(0)=D(ηFu+ηxFux+ηyFuy)dxdy(4.18)
应用二维分部积分公式,即式 ( 4.5 ) \left(4.5\right) (4.5) ,得
Φ ′ ( 0 ) = ∬ D ( η F u + η x F u x + η y F u y ) d x d y = ∬ D η ( F u − ∂ ∂ x F u x − ∂ ∂ y F u y ) d x d y (4.19) \begin{aligned} \varPhi ^\prime\left( 0 \right) &=\iint_D{\left( \eta F_u+\eta _xF_{u_x}+\eta _yF_{u_y} \right) \mathrm{d}x\mathrm{d}y}\\ &=\iint_D{\eta \left( F_u-\frac{\partial}{\partial x}F_{u_x}-\frac{\partial}{\partial y}F_{u_y} \right) \mathrm{d}x\mathrm{d}y}\\ \end{aligned} \tag{4.19} Φ(0)=D(ηFu+ηxFux+ηyFuy)dxdy=Dη(FuxFuxyFuy)dxdy(4.19)
结合必要条件 Φ ′ ( 0 ) = 0 \varPhi ^\prime\left( 0 \right)=0 Φ(0)=0 和变分学基本引理 ( 1.2 ) \left(1.2\right) (1.2) 的自然推广(推广十分容易,此处不证),自然得到
F u − ∂ ∂ x F u x − ∂ ∂ y F u y = 0 (4.20) F_u-\frac{\partial}{\partial x}F_{u_x}-\frac{\partial}{\partial y}F_{u_y}=0 \tag{4.20} FuxFuxyFuy=0(4.20)

4.3、多方程多变量高次的欧拉方程

经过前面的铺垫,这一推广是水到渠成的。但考虑到读者可能会跟不上节奏,所以还是一步一步来。

首先是单方程两变量两次的欧拉方程( ( 4.16 ) \left(4.16\right) (4.16) 的自然推广),证明只需考虑 2 2 2 次二维分部积分即可——
F u − ∂ ∂ x F u x − ∂ ∂ y F u y + ∂ 2 ∂ x 2 F u x x + ∂ 2 ∂ x ∂ y F u x y + ∂ 2 ∂ y 2 F u y y = 0 (4.21) F_u-\frac{\partial}{\partial x}F_{u_x}-\frac{\partial}{\partial y}F_{u_y}+\frac{\partial^2}{\partial x^2}F_{u_{xx}}+\frac{\partial^2}{\partial x \partial y}F_{u_{xy}}+\frac{\partial^2}{\partial y^2}F_{u_{yy}}=0 \tag{4.21} FuxFuxyFuy+x22Fuxx+xy2Fuxy+y22Fuyy=0(4.21)
然后应用 ( 4.13 ) \left(4.13\right) (4.13) ,并记求偏导算子 D m = ∂ ∂ x m \mathrm{D}_m =\frac{\partial}{\partial x_m} Dm=xm ,就能将 ( 4.21 ) \left(4.21\right) (4.21) 推广到 M M M 变量、 N N N 次的形式了
∑ q 1 + ⋯ + q m ⩽ N ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ F ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m u ] ) } = 0 (4.22) \sum_{q_1+\cdots +q_m\leqslant N}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial F}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}u \right]} \right) \right\}}=0 \tag{4.22} q1++qmN(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmu]F)}=0(4.22)
( 3.8 ) \left(3.8\right) (3.8) 进行相同的操作,得到 M M M 变量、 N N N 次、 P P P 方程的形式
{ ∑ q 1 + ⋯ + q m ⩽ N ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ F ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m u 1 ] ) } = 0 ⋮ ∑ q 1 + ⋯ + q m ⩽ N ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ F ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m u P ] ) } = 0 (4.23) \begin{cases} \displaystyle \sum_{q_1+\cdots +q_m\leqslant N}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial F}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}u_1 \right]} \right) \right\}}=0\\ \vdots\\ \displaystyle \sum_{q_1+\cdots +q_m\leqslant N}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial F}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}u_P \right]} \right) \right\}}=0\\ \end{cases} \tag{4.23} q1++qmN(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmu1]F)}=0q1++qmN(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmuP]F)}=0(4.23)
额,写成 ∑ \sum 的形式看起来好像很反人类,不过像上面的公式一样,展开一下就会特别清晰了。反正实际上也用不到这么高维度的情形。主要是写成一个统一的形式后,可以加深理解。

5、变分

微积分中,我们学了微分 d x \mathrm{d} x dx ,知道导数是 d y d x \frac{\mathrm{d}y}{\mathrm{d}x} dxdy ,并且自变量的微小增量 d x \mathrm{d} x dx 会引起因变量的微小增量 d y \mathrm{d} y dy微积分的函数微小增量是实数泛函的微小增量是函数,我们能不能类似微分 d x \mathrm{d} x dx 定义一个微小函数增量呢?

回忆我们在欧拉方程的求解方法:我们假设函数 y ( x ) y\left(x\right) y(x) 有一个微小增量 α ⋅ η ( x ) \alpha \cdot \eta\left(x\right) αη(x) ,对 α \alpha α 求导,最终令 α = 0 \alpha=0 α=0 。因此,我们记函数 y ( x ) y\left(x\right) y(x) 的微小增量为变分 y ( x ) − Y ( x ) = δ y = α ⋅ η ( x ) y\left(x\right)-Y\left(x\right)=\delta y=\alpha \cdot \eta\left(x\right) y(x)Y(x)=δy=αη(x) ,其中 δ y \delta y δy 的含义类似于微分 d x \mathrm{d}x dx 。我们将泛函写成参数 α \alpha α 的形式
I [ y ( ⋅ ) ] = Φ ( α ) = ∫ x 1 x 2 F ( x , Y + α η , Y ′ + α η ′ ) d x (5.1) I\left[ y\left( \cdot \right) \right] =\varPhi \left( \alpha \right) =\int_{x_1}^{x_2}{F\left( x,Y+\alpha \eta ,Y^\prime+\alpha \eta ^\prime \right) \mathrm{d}x} \tag{5.1} I[y()]=Φ(α)=x1x2F(x,Y+αη,Y+αη)dx(5.1)
我们求解欧拉方程用了 Φ ′ ( 0 ) \varPhi^\prime \left(0\right) Φ(0) ,所以我们把 α ⋅ Φ ′ ( 0 ) \alpha \cdot \varPhi^\prime \left(0\right) αΦ(0) 定义为 I I I 的变分 δ I \delta I δI (与 δ y = α ⋅ η \delta y=\alpha \cdot \eta δy=αη 对应)。

变分的运算法则类似于高数微分的运算法则,故此处不予赘述,只对这些定理的部分进行列举

  • F ( x , y , y ′ ) ⇒ δ F = F ( x , y + α η , y ′ + α η ′ ) − F ( x , y , y ′ ) F\left( x,y,y^\prime \right) \Rightarrow \delta F=F\left( x,y+\alpha \eta ,y^\prime+\alpha \eta ^\prime \right) -F\left( x,y,y^\prime \right) F(x,y,y)δF=F(x,y+αη,y+αη)F(x,y,y) δ F = ∂ F ∂ y δ y + ∂ F ∂ y ′ δ y ′ \delta F=\frac{\partial F}{\partial y}\delta y+\frac{\partial F}{\partial y^\prime}\delta y^\prime δF=yFδy+yFδy
  • I [ y ( ⋅ ) ] = ∫ x 1 x 2 F ( x , Y + α η , Y ′ + α η ′ ) d x I\left[ y\left( \cdot \right) \right] =\int_{x_1}^{x_2}{F\left( x,Y+\alpha \eta ,Y^\prime+\alpha \eta ^\prime \right) \mathrm{d}x} I[y()]=x1x2F(x,Y+αη,Y+αη)dx δ I = δ ∫ x 1 x 2 F d x = ∫ x 1 x 2 δ F d x \delta I=\delta \int_{x_1}^{x_2}{ F \mathrm{d}x}=\int_{x_1}^{x_2}{\delta F \mathrm{d}x} δI=δx1x2Fdx=x1x2δFdx
  • y = y ( x ) y=y\left( x \right) y=y(x) ,则 δ y = d y d x δ x \delta y=\frac{\mathrm{d} y}{\mathrm{d} x}\delta x δy=dxdyδx
  • 对于 F 1 , F 2 F_1,F_2 F1,F2 ,有 δ ( F 1 + F 2 ) = δ F 1 + δ F 2 \delta \left( F_1+F_2 \right) =\delta F_1+\delta F_2 δ(F1+F2)=δF1+δF2 δ ( F 1 F 2 ) = F 1 δ F 2 + F 2 δ F 1 \delta \left( F_1F_2 \right) =F_1\delta F_2+F_2\delta F_1 δ(F1F2)=F1δF2+F2δF1

同样的,我们可以证明一个重要的定理——

泛函 I I I 取到极值的必要条件为 δ I = 0 \delta I=0 δI=0

因此,我们可以用变分的语言,将上述定理重新证明一遍,此处不予赘述。至于引入变分的好处是什么,请看下一章节——「参数形式欧拉方程」

6、参数形式欧拉方程

在上面的讨论中,我们已经研究完了多元函数、多约束方程、高阶导数约束情形的欧拉方程。然而,很多时候我们会对方程进行参数换元。因此,接下来,我们将研究参数情形的欧拉方程。

6.1、一自变量两因变量参数形式欧拉方程

我们考虑 y = y ( x ) y=y\left( x \right) y=y(x) 可以用参数方程 { x = x ( t ) y = y ( t ) \begin{cases}x=x\left( t \right)\\y=y\left( t \right)\\ \end{cases} {x=x(t)y=y(t) 形式进行表达。此时原泛函 I [ y ( ⋅ ) ] = ∫ x 1 x 2 F ( x , y , y ′ ) d x I\left[ y\left( \cdot \right) \right] =\int_{x_1}^{x_2}{F\left( x,y,y^\prime \right) \mathrm{d}x} I[y()]=x1x2F(x,y,y)dx 转化为了 J [ x ( ⋅ ) , y ( ⋅ ) ] = ∫ t 1 t 2 G ( x , y , x ′ , y ′ ) d t J\left[ x\left( \cdot \right) ,y\left( \cdot \right) \right] =\int_{t_1}^{t_2}{G\left( x,y,x^\prime,y^\prime \right) \mathrm{d}t} J[x(),y()]=t1t2G(x,y,x,y)dt

我们考虑变分 δ J \delta J δJ
δ J = ∫ t 1 t 2 δ G ( x , y , x ′ , y ′ ) d t = ∫ t 1 t 2 [ ∂ G ∂ x δ x + ∂ G ∂ y δ y + ∂ G ∂ x ′ δ x ′ + ∂ G ∂ y ′ δ y ′ ] d t (6.1) \begin{aligned} \delta J&=\int_{t_1}^{t_2}{\delta G\left( x,y,x^\prime,y^\prime \right) \mathrm{d}t}\\ &=\int_{t_1}^{t_2}{\left[ \frac{\partial G}{\partial x}\delta x+\frac{\partial G}{\partial y}\delta y+\frac{\partial G}{\partial x^\prime}\delta x^\prime+\frac{\partial G}{\partial y^\prime}\delta y^\prime \right] \mathrm{d}t}\\ \end{aligned} \tag{6.1} δJ=t1t2δG(x,y,x,y)dt=t1t2[xGδx+yGδy+xGδx+yGδy]dt(6.1)
δ t = α ⋅ η \delta t=\alpha \cdot \eta δt=αη ,此时 δ x = d x d t δ t \delta x= \frac{\mathrm{d} x}{\mathrm{d} t} \delta t δx=dtdxδt δ y = d y d t δ t \delta y= \frac{\mathrm{d} y}{\mathrm{d} t} \delta t δy=dtdyδt ,结合分部积分公式 ∫ t 1 t 2 ∂ G ∂ y ′ δ y ′ d t = − ∫ t 1 t 2 d d t ∂ G ∂ y ′ δ y d t \int_{t_1}^{t_2}{\frac{\partial G}{\partial y^\prime}\delta y^\prime\mathrm{d}t}=-\int_{t_1}^{t_2}{\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial G}{\partial y^\prime}\delta y\mathrm{d}t} t1t2yGδydt=t1t2dtdyGδydt ,有

结合 δ J = α ⋅ Φ ′ ( 0 ) \delta J=\alpha \cdot\varPhi^\prime \left(0\right) δJ=αΦ(0) Φ ( α ) = J [ x ( ⋅ ) , y ( ⋅ ) ] \varPhi\left(\alpha \right)=J\left[ x\left( \cdot \right) ,y\left( \cdot \right) \right] Φ(α)=J[x(),y()] ,得
δ J = ∫ t 1 t 2 [ ∂ G ∂ x δ x + ∂ G ∂ y δ y + ∂ G ∂ x ′ δ x ′ + ∂ G ∂ y ′ δ y ′ ] d t = ∫ t 1 t 2 [ ∂ G ∂ x δ x + ∂ G ∂ y δ y − d d x ∂ G ∂ x ′ δ x − d d x ∂ G ∂ y ′ δ y ] d t = ∫ t 1 t 2 [ ∂ G ∂ x d x d t + ∂ G ∂ y d y d t − ( d d t ∂ G ∂ x ′ ) d x d t − ( d d t ∂ G ∂ y ′ ) d y d t ] δ t d t = ∫ t 1 t 2 [ d x d t ( ∂ G ∂ x − d d t ∂ G ∂ x ′ ) + d y d t ( ∂ G ∂ y − d d t ∂ G ∂ y ′ ) ] δ t d t (6.2) \begin{aligned} \delta J&=\int_{t_1}^{t_2}{\left[ \frac{\partial G}{\partial x}\delta x+\frac{\partial G}{\partial y}\delta y+\frac{\partial G}{\partial x^\prime}\delta x^\prime+\frac{\partial G}{\partial y^\prime}\delta y^\prime \right] \mathrm{d}t}\\ &=\int_{t_1}^{t_2}{\left[ \frac{\partial G}{\partial x}\delta x+\frac{\partial G}{\partial y}\delta y-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial G}{\partial x^\prime}\delta x-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial G}{\partial y^\prime}\delta y \right] \mathrm{d}t}\\ &=\int_{t_1}^{t_2}{\left[ \frac{\partial G}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t}+\frac{\partial G}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}-\left( \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial G}{\partial x^\prime} \right) \frac{\mathrm{d}x}{\mathrm{d}t}-\left( \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial G}{\partial y^\prime} \right) \frac{\mathrm{d}y}{\mathrm{d}t} \right] \delta t\mathrm{d}t}\\ &=\int_{t_1}^{t_2}{\left[ \frac{\mathrm{d}x}{\mathrm{d}t}\left( \frac{\partial G}{\partial x}-\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial G}{\partial x^\prime} \right) +\frac{\mathrm{d}y}{\mathrm{d}t}\left( \frac{\partial G}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial G}{\partial y^\prime} \right) \right] \delta t\mathrm{d}t}\\ \end{aligned} \tag{6.2} δJ=t1t2[xGδx+yGδy+xGδx+yGδy]dt=t1t2[xGδx+yGδydxdxGδxdxdyGδy]dt=t1t2[xGdtdx+yGdtdy(dtdxG)dtdx(dtdyG)dtdy]δtdt=t1t2[dtdx(xGdtdxG)+dtdy(yGdtdyG)]δtdt(6.2)
根据 δ t \delta t δt 的任意性,由变分学基本引理,我们得到了参数方程形式的欧拉方程
d x d t ( ∂ G ∂ x − d d x ∂ G ∂ x ′ ) + d y d t ( ∂ G ∂ y − d d x ∂ G ∂ y ′ ) = 0 (6.3) \frac{\mathrm{d}x}{\mathrm{d}t}\left( \frac{\partial G}{\partial x}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial G}{\partial x^\prime} \right) +\frac{\mathrm{d}y}{\mathrm{d}t}\left( \frac{\partial G}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial G}{\partial y^\prime} \right) = 0\tag{6.3} dtdx(xGdxdxG)+dtdy(yGdxdyG)=0(6.3)
或者记 G x = ∂ G ∂ x G_x=\frac{\partial G}{\partial x} Gx=xG G x ′ = ∂ G ∂ x ′ G_{x^\prime}=\frac{\partial G}{\partial x^\prime} Gx=xG G y = ∂ G ∂ y G_y=\frac{\partial G}{\partial y} Gy=yG G y ′ = ∂ G ∂ y ′ G_{y^\prime}=\frac{\partial G}{\partial y^\prime} Gy=yG ,有
x ′ ( G x − d d t G x ′ ) + y ′ ( G y − d d t G y ′ ) = 0 (6.4) x^\prime\left( G_x-\frac{\mathrm{d}}{\mathrm{d}t}G_{x^\prime} \right) +y^\prime\left( G_y-\frac{\mathrm{d}}{\mathrm{d}t}G_{y^\prime} \right) =0 \tag{6.4} x(GxdtdGx)+y(GydtdGy)=0(6.4)

6.2、多自变量多因变量参数形式欧拉方程

假设自变量为 M M M 个,因变量有 N N N 个,那么这代表着 N N N 维空间中的 M M M 维流形,其由 m m m 个独立方程确定。我们考虑 M = 1 , N = 3 M=1,N=3 M=1,N=3 的情形,即为三维空间的参数曲线 { x = x ( t ) y = y ( t ) z = z ( t ) \begin{cases}x=x\left( t \right)\\y=y\left( t \right)\\z=z\left( t \right)\\ \end{cases} x=x(t)y=y(t)z=z(t) ,类似地推导可以得出

x ′ ( G x − d d t G x ′ ) + y ′ ( G y − d d t G y ′ ) + z ′ ( G z − d d t G z ′ ) = 0 (6.5) x^\prime\left( G_x-\frac{\mathrm{d}}{\mathrm{d}t}G_{x^\prime} \right) +y^\prime\left( G_y-\frac{\mathrm{d}}{\mathrm{d}t}G_{y^\prime} \right) +z^\prime\left( G_z-\frac{\mathrm{d}}{\mathrm{d}t}G_{z^\prime} \right) =0 \tag{6.5} x(GxdtdGx)+y(GydtdGy)+z(GzdtdGz)=0(6.5)
我们再考虑 N N N 维空间中的 M M M 维流形
{ x 1 = x 1 ( t 1 , ⋯   , t M ) ⋮ x N = x N ( t 1 , ⋯   , t M ) (6.6) \begin{cases} x_1=x_1\left( t_1,\cdots ,t_M \right)\\ \vdots\\ x_N=x_N\left( t_1,\cdots ,t_M \right)\\ \end{cases} \tag{6.6} x1=x1(t1,,tM)xN=xN(t1,,tM)(6.6)
考虑最高为 1 1 1 次的泛函
J [ x 1 , ⋯   , x N ] = ∫ Ω G ( x 1 , ⋯ x N , ∂ x 1 ∂ t 1 , ⋯ ∂ x 1 ∂ t M , ⋯   , ∂ x N ∂ t 1 , ⋯ ∂ x N ∂ t M ) d t 1 ⋯ d t M (6.7) J\left[ x_1,\cdots ,x_N \right] =\int_{\Omega}{G\left( x_1,\cdots x_N,\frac{\partial x_1}{\partial t_1},\cdots \frac{\partial x_1}{\partial t_M},\cdots ,\frac{\partial x_N}{\partial t_1},\cdots \frac{\partial x_N}{\partial t_M} \right) \mathrm{d}t_1\cdots \mathrm{d}t_M} \tag{6.7} J[x1,,xN]=ΩG(x1,xN,t1x1,tMx1,,t1xN,tMxN)dt1dtM(6.7)
则它的变分 δ J \delta J δJ 为(这里求和换来换去都快把我换晕了
δ J = ∫ Ω δ G ( x 1 , ⋯ x N , ∂ x 1 ∂ t 1 , ⋯ ∂ x 1 ∂ t M , ⋯   , ∂ x N ∂ t 1 , ⋯ ∂ x N ∂ t M ) d t 1 ⋯ d t M = ∫ Ω [ ∑ n = 1 N ∂ G ∂ x n δ x n + ∑ n = 1 N ∑ m = 1 M ∂ G ∂ ( ∂ x n ∂ t m ) δ ( ∂ x n ∂ t m ) ] d t 1 ⋯ d t M = ∫ Ω [ ∑ n = 1 N ∂ G ∂ x n δ x n − ∑ n = 1 N ∑ p = 1 M ∂ ∂ t p ∂ G ∂ ( ∂ x n ∂ t p ) δ x n ] d t 1 ⋯ d t M = ∫ Ω [ ∑ n = 1 N ∑ m = 1 M ∂ G ∂ x n ∂ x n ∂ t m δ t m − ∑ n = 1 N ( ∑ m = 1 M ∂ x n ∂ t m δ t m ) ( ∑ p = 1 M ∂ ∂ t p ∂ G ∂ ( ∂ x n ∂ t p ) ) ] d t 1 ⋯ d t M = ∫ Ω [ ∑ m = 1 M δ t m ∑ n = 1 N ∂ G ∂ x n ∂ x n ∂ t m − ∑ m = 1 M δ t m ∑ n = 1 N ( ∂ x n ∂ t m ) ( ∑ p = 1 M ∂ ∂ t p ∂ G ∂ ( ∂ x n ∂ t p ) ) ] d t 1 ⋯ d t M = ∫ Ω ∑ m = 1 M δ t m [ ∑ n = 1 N ∂ x n ∂ t m ( ∂ G ∂ x n − ∑ p = 1 M ∂ ∂ t p ∂ G ∂ ( ∂ x n ∂ t p ) ) ] d t 1 ⋯ d t M (6.8) \begin{aligned} \delta J&=\int_{\Omega}{\delta G\left( x_1,\cdots x_N,\frac{\partial x_1}{\partial t_1},\cdots \frac{\partial x_1}{\partial t_M},\cdots ,\frac{\partial x_N}{\partial t_1},\cdots \frac{\partial x_N}{\partial t_M} \right) \mathrm{d}t_1\cdots \mathrm{d}t_M}\\ &=\int_{\Omega}{\left[ \sum_{n=1}^N{\frac{\partial G}{\partial x_n}\delta x_n}+\sum_{n=1}^N{\sum_{m=1}^M{\frac{\partial G}{\partial \left( \frac{\partial x_n}{\partial t_m} \right)}\delta \left( \frac{\partial x_n}{\partial t_m} \right)}} \right] \mathrm{d}t_1\cdots \mathrm{d}t_M}\\ &=\int_{\Omega}{\left[ \sum_{n=1}^N{\frac{\partial G}{\partial x_n}\delta x_n}-\sum_{n=1}^N{\sum_{p=1}^M{\frac{\partial}{\partial t_p}\frac{\partial G}{\partial \left( \frac{\partial x_n}{\partial t_p} \right)}\delta x_n}} \right] \mathrm{d}t_1\cdots \mathrm{d}t_M}\\ &=\int_{\Omega}{\left[ \sum_{n=1}^N{\sum_{m=1}^M{\frac{\partial G}{\partial x_n}\frac{\partial x_n}{\partial t_m}\delta t_m}}-\sum_{n=1}^N{\left( \sum_{m=1}^M{\frac{\partial x_n}{\partial t_m}\delta t_m} \right) \left( \sum_{p=1}^M{\frac{\partial}{\partial t_p}\frac{\partial G}{\partial \left( \frac{\partial x_n}{\partial t_p} \right)}} \right)} \right] \mathrm{d}t_1\cdots \mathrm{d}t_M}\\ &=\int_{\Omega}{\left[ \sum_{m=1}^M{\delta t_m\sum_{n=1}^N{\frac{\partial G}{\partial x_n}\frac{\partial x_n}{\partial t_m}}}-\sum_{m=1}^M{\delta t_m\sum_{n=1}^N{\left( \frac{\partial x_n}{\partial t_m} \right) \left( \sum_{p=1}^M{\frac{\partial}{\partial t_p}\frac{\partial G}{\partial \left( \frac{\partial x_n}{\partial t_p} \right)}} \right)}} \right] \mathrm{d}t_1\cdots \mathrm{d}t_M}\\ &=\int_{\Omega}{\sum_{m=1}^M{\delta t_m\left[ \sum_{n=1}^N{\frac{\partial x_n}{\partial t_m}\left( \frac{\partial G}{\partial x_n}-\sum_{p=1}^M{\frac{\partial}{\partial t_p}\frac{\partial G}{\partial \left( \frac{\partial x_n}{\partial t_p} \right)}} \right)} \right]}\mathrm{d}t_1\cdots \mathrm{d}t_M}\\ \end{aligned} \tag{6.8} δJ=ΩδG(x1,xN,t1x1,tMx1,,t1xN,tMxN)dt1dtM=Ωn=1NxnGδxn+n=1Nm=1M(tmxn)Gδ(tmxn)dt1dtM=Ωn=1NxnGδxnn=1Np=1Mtp(tpxn)Gδxndt1dtM=Ωn=1Nm=1MxnGtmxnδtmn=1N(m=1Mtmxnδtm)p=1Mtp(tpxn)Gdt1dtM=Ωm=1Mδtmn=1NxnGtmxnm=1Mδtmn=1N(tmxn)p=1Mtp(tpxn)Gdt1dtM=Ωm=1Mδtmn=1NtmxnxnGp=1Mtp(tpxn)Gdt1dtM(6.8)
根据 δ t m \delta t_m δtm 的任意性,由变分学基本引理,我们得到了自变量为 M M M 个、因变量有 N N N 个的参数方程形式的欧拉方程
{ ∑ n = 1 N ∂ x n ∂ t 1 ( ∂ G ∂ x n − ∑ p = 1 M ∂ ∂ t p ∂ G ∂ ( ∂ x n ∂ t p ) ) = 0 ⋮ ∑ n = 1 N ∂ x n ∂ t M ( ∂ G ∂ x n − ∑ p = 1 M ∂ ∂ t p ∂ G ∂ ( ∂ x n ∂ t p ) ) = 0 (6.9) \begin{cases} \displaystyle \sum_{n=1}^N{\frac{\partial x_n}{\partial t_1}\left( \frac{\partial G}{\partial x_n}-\sum_{p=1}^M{\frac{\partial}{\partial t_p}\frac{\partial G}{\partial \left( \frac{\partial x_n}{\partial t_p} \right)}} \right)}=0\\ \vdots\\ \displaystyle \sum_{n=1}^N{\frac{\partial x_n}{\partial t_M}\left( \frac{\partial G}{\partial x_n}-\sum_{p=1}^M{\frac{\partial}{\partial t_p}\frac{\partial G}{\partial \left( \frac{\partial x_n}{\partial t_p} \right)}} \right)}=0\\ \end{cases} \tag{6.9} n=1Nt1xnxnGp=1Mtp(tpxn)G=0n=1NtMxnxnGp=1Mtp(tpxn)G=0(6.9)
当然,这一公式也可以推广到高次,记求偏导算子 D m = ∂ ∂ t m \mathrm{D}_m =\frac{\partial}{\partial t_m} Dm=tm 并设最高次数为 Q Q Q ,则有
{ ∑ n = 1 N ∂ x n ∂ t 1 ( ∑ q 1 + ⋯ + q m ⩽ Q ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ G ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m x n ] ) } ) = 0 ⋮ ∑ n = 1 N ∂ x n ∂ t M ( ∑ q 1 + ⋯ + q m ⩽ Q ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ G ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m x n ] ) } ) = 0 (6.10) \begin{cases} \displaystyle \sum_{n=1}^N{\frac{\partial x_n}{\partial t_1}\left( \sum_{q_1+\cdots +q_m\leqslant Q}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial G}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}x_n \right]} \right) \right\}} \right)}=0\\ \vdots\\ \displaystyle \sum_{n=1}^N{\frac{\partial x_n}{\partial t_M}\left( \sum_{q_1+\cdots +q_m\leqslant Q}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial G}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}x_n \right]} \right) \right\}} \right)}=0\\ \end{cases} \tag{6.10} n=1Nt1xnq1++qmQ(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmxn]G)}=0n=1NtMxnq1++qmQ(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmxn]G)}=0(6.10)
上述公式纯属我手推的,不知道对不对,如果要使用的话,建议读者手动验算一下再用

7、总结

首先,我们引入了最简单的欧拉方程
∂ F ∂ y − d d x ∂ F ∂ y ′ = 0 (2.9) \frac{\partial F}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime} = 0 \tag{2.9} yFdxdyF=0(2.9)
然后,我们将其推广到了 n n n
∂ F ∂ y − d d x ∂ F ∂ y ′ + ⋯ + ( − 1 ) n d n d x n ∂ F ∂ y ( n ) = 0 (2.18) \frac{\partial F}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime}+\cdots+\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y^{\left(n\right)}} = 0 \tag{2.18} yFdxdyF++(1)ndxndny(n)F=0(2.18)
也可以用求和的形式记录它
∑ k = 0 n ( − 1 ) k ( d k d x k ∂ F ∂ y ( k ) ) = 0 (2.14) \sum_{k=0}^{n}{\left( -1 \right) ^k\left( \frac{\mathrm{d}^k}{\mathrm{d}x^k}\frac{\partial F}{\partial y^{\left( k \right)}} \right)}=0 \tag{2.14} k=0n(1)k(dxkdky(k)F)=0(2.14)
然后我们考虑了涉及两个变元 y 1 ( x ) y_1\left( x \right) y1(x) y 2 ( x ) y_2\left( x \right) y2(x) 情形,得到了
{ ∂ F ∂ y 1 − d d x ∂ F ∂ y 1 ′ = 0 ∂ F ∂ y 2 − d d x ∂ F ∂ y 2 ′ = 0 (3.4) \begin{cases} \displaystyle \frac{\partial F}{\partial y_1}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y_{1}^{'}}=0\\ \displaystyle \frac{\partial F}{\partial y_2}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y_{2}^{'}}=0\\ \end{cases} \tag{3.4} y1Fdxdy1F=0y2Fdxdy2F=0(3.4)
通过自然地推广,将其推广到 M M M 个方程,每个方程 N m N_m Nm 次的情形,得到了
{ ∑ n = 0 N 1 ( − 1 ) n d n d x n ∂ F ∂ y 1 ( n ) = 0 ∑ n = 0 N 2 ( − 1 ) n d n d x n ∂ F ∂ y 2 ( n ) = 0 ⋮ ∑ n = 0 N M ( − 1 ) n d n d x n ∂ F ∂ y M ( n ) = 0 (3.8) \begin{cases} \displaystyle \sum_{n=0}^{N_1}{\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y_{1}^{\left( n \right)}}}=0\\ \displaystyle \sum_{n=0}^{N_2}{\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y_{2}^{\left( n \right)}}}=0\\ \vdots\\ \displaystyle \sum_{n=0}^{N_M}{\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y_{M}^{\left( n \right)}}}=0\\ \end{cases} \tag{3.8} n=0N1(1)ndxndny1(n)F=0n=0N2(1)ndxndny2(n)F=0n=0NM(1)ndxndnyM(n)F=0(3.8)
为了将欧拉方程推广到多变量的情形,我们通过广义斯托克斯公式推导了 M M M 维的 n n n 次分部积分公式。

我们假设 η ∣ ∂ Ω \eta|_{\partial \Omega} ηΩ 满足 n − 1 n-1 n1 次边界条件,即 η ∣ ∂ Ω = 0 , ∂ η ∂ x ∣ ∂ Ω = 0 , ⋯   , , ∂ n − 1 η ∂ x n − 1 ∣ ∂ Ω = 0 \eta|_{\partial \Omega} =0,\left.\frac{\partial \eta}{\partial x}\right|_{\partial \Omega} =0,\cdots ,,\left.\frac{\partial^{n-1} \eta}{\partial x^{n-1}}\right|_{\partial \Omega} =0 ηΩ=0,xηΩ=0,,,xn1n1ηΩ=0 ,那么就可以得到 M M M 维的 n n n 次分部积分公式
∫ Ω ( ∂ n η ∂ ( x m ) n ) f ⋅ d x 1 ⋯ d x M = ( − 1 ) n ∫ Ω η ( ∂ n f ∂ ( x m ) n ) ⋅ d x 1 ⋯ d x M (4.13) \int_{\Omega}{\left( \frac{\partial ^n\eta}{\partial \left( x_m \right) ^n} \right) f\cdot \mathrm{d}x_1\cdots \mathrm{d}x_M}=\left( -1 \right) ^n\int_{\Omega}{\eta \left( \frac{\partial ^nf}{\partial \left( x_m \right) ^n} \right) \cdot \mathrm{d}x_1\cdots \mathrm{d}x_M} \tag{4.13} Ω((xm)nnη)fdx1dxM=(1)nΩη((xm)nnf)dx1dxM(4.13)

我们将其与一维的分部积分公式对比
∫ L d ( η f ) d x ⋅ d x = 0 ⇒ ∫ L ∂ η ∂ x ⋅ f ⋅ d x = − ∫ L η ∂ f ∂ x ⋅ d x ⇒ ∫ L ∂ n η ∂ x n ⋅ f ⋅ d x = ( − 1 ) n ∫ L η ( ∂ n f ∂ x n ) ⋅ d x (7.1) \begin{aligned} & \int_L{\frac{\mathrm{d}\left( \eta f \right)}{\mathrm{d}x}\cdot \mathrm{d}x}=0\\ \Rightarrow& \int_L{\frac{\partial \eta}{\partial x}\cdot f\cdot \mathrm{d}x}=-\int_L{\eta \frac{\partial f}{\partial x}\cdot \mathrm{d}x}\\ \Rightarrow& \int_L{\frac{\partial ^n\eta}{\partial x^n}\cdot f\cdot \mathrm{d}x}=\left( -1 \right) ^n\int_L{\eta \left( \frac{\partial ^nf}{\partial x^n} \right) \cdot \mathrm{d}x}\\ \end{aligned} \tag{7.1} Ldxd(ηf)dx=0Lxηfdx=LηxfdxLxnnηfdx=(1)nLη(xnnf)dx(7.1)
不难发现它们是一致的。于是,我们将欧拉方程推广到两变量函数、最高 1 1 1 次导数的情形
F u − ∂ ∂ x F u x − ∂ ∂ y F u y = 0 (4.16) F_u-\frac{\partial}{\partial x}F_{u_x}-\frac{\partial}{\partial y}F_{u_y}=0 \tag{4.16} FuxFuxyFuy=0(4.16)
进而,我们推广到了两变量函数、最高 2 2 2 次导数
F u − ∂ ∂ x F u x − ∂ ∂ y F u y + ∂ 2 ∂ x 2 F u x x + ∂ 2 ∂ x ∂ y F u x y + ∂ 2 ∂ y 2 F u y y = 0 (4.21) F_u-\frac{\partial}{\partial x}F_{u_x}-\frac{\partial}{\partial y}F_{u_y}+\frac{\partial^2}{\partial x^2}F_{u_{xx}}+\frac{\partial^2}{\partial x \partial y}F_{u_{xy}}+\frac{\partial^2}{\partial y^2}F_{u_{yy}}=0 \tag{4.21} FuxFuxyFuy+x22Fuxx+xy2Fuxy+y22Fuyy=0(4.21)
然后,我们记偏导算子 D m = ∂ ∂ x m \mathrm{D}_m =\frac{\partial}{\partial x_m} Dm=xm 作为求导算子 D = d d x \mathrm{D} =\frac{\mathrm{d}}{\mathrm{d} x} D=dxd 的推广。我们得到了 M M M 变量 N N N 次的欧拉方程
∑ q 1 + ⋯ + q m ⩽ N ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ F ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m u ] ) } = 0 (4.22) \sum_{q_1+\cdots +q_m\leqslant N}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial F}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}u \right]} \right) \right\}}=0 \tag{4.22} q1++qmN(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmu]F)}=0(4.22)
并且自然地将其推广为方程组 u 1 , u 2 , ⋯ u P u_1,u_2,\cdots u_P u1,u2,uP 的情形,我们得到了 M M M 变量 N N N P P P 方程的欧拉方程
{ ∑ q 1 + ⋯ + q m ⩽ N ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ F ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m u 1 ] ) } = 0 ⋮ ∑ q 1 + ⋯ + q m ⩽ N ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ F ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m u P ] ) } = 0 (4.23) \begin{cases} \displaystyle \sum_{q_1+\cdots +q_m\leqslant N}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial F}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}u_1 \right]} \right) \right\}}=0\\ \vdots\\ \displaystyle \sum_{q_1+\cdots +q_m\leqslant N}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial F}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}u_P \right]} \right) \right\}}=0\\ \end{cases} \tag{4.23} q1++qmN(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmu1]F)}=0q1++qmN(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmuP]F)}=0(4.23)
在引入参数方程之前,我们先引入了变分的概念。变分类似于微分,只是是对泛函的“微分”。通过泛函 I I I 取到极值的必要条件为 δ I = 0 \delta I=0 δI=0 这一好用的结论,以及变分与微分运算性质一致的特性,我们可以让证明过程变得更加简洁明了。

最终,我们通过变分证明了参数方程形式的欧拉方程。首先是 1 1 1 自变量 2 2 2 因变量的欧拉方程
x ′ ( G x − d d t G x ′ ) + y ′ ( G y − d d t G y ′ ) = 0 (6.4) x^\prime\left( G_x-\frac{\mathrm{d}}{\mathrm{d}t}G_{x^\prime} \right) +y^\prime\left( G_y-\frac{\mathrm{d}}{\mathrm{d}t}G_{y^\prime} \right) =0 \tag{6.4} x(GxdtdGx)+y(GydtdGy)=0(6.4)
然后是 1 1 1 自变量 3 3 3 因变量的欧拉方程
x ′ ( G x − d d t G x ′ ) + y ′ ( G y − d d t G y ′ ) + z ′ ( G z − d d t G z ′ ) = 0 (6.5) x^\prime\left( G_x-\frac{\mathrm{d}}{\mathrm{d}t}G_{x^\prime} \right) +y^\prime\left( G_y-\frac{\mathrm{d}}{\mathrm{d}t}G_{y^\prime} \right) +z^\prime\left( G_z-\frac{\mathrm{d}}{\mathrm{d}t}G_{z^\prime} \right) =0 \tag{6.5} x(GxdtdGx)+y(GydtdGy)+z(GzdtdGz)=0(6.5)
再推广到自变量为 M M M 个、因变量有 N N N 个的最高 1 1 1 次参数方程形式的欧拉方程
{ ∑ n = 1 N ∂ x n ∂ t 1 ( ∂ G ∂ x n − ∑ p = 1 M ∂ ∂ t p ∂ G ∂ ( ∂ x n ∂ t p ) ) = 0 ⋮ ∑ n = 1 N ∂ x n ∂ t M ( ∂ G ∂ x n − ∑ p = 1 M ∂ ∂ t p ∂ G ∂ ( ∂ x n ∂ t p ) ) = 0 (6.9) \begin{cases} \displaystyle \sum_{n=1}^N{\frac{\partial x_n}{\partial t_1}\left( \frac{\partial G}{\partial x_n}-\sum_{p=1}^M{\frac{\partial}{\partial t_p}\frac{\partial G}{\partial \left( \frac{\partial x_n}{\partial t_p} \right)}} \right)}=0\\ \vdots\\ \displaystyle \sum_{n=1}^N{\frac{\partial x_n}{\partial t_M}\left( \frac{\partial G}{\partial x_n}-\sum_{p=1}^M{\frac{\partial}{\partial t_p}\frac{\partial G}{\partial \left( \frac{\partial x_n}{\partial t_p} \right)}} \right)}=0\\ \end{cases} \tag{6.9} n=1Nt1xnxnGp=1Mtp(tpxn)G=0n=1NtMxnxnGp=1Mtp(tpxn)G=0(6.9)
当然,这一公式也可以推广到高次,记求偏导算子 D m = ∂ ∂ t m \mathrm{D}_m =\frac{\partial}{\partial t_m} Dm=tm 并设最高次数为 Q Q Q ,则有
{ ∑ n = 1 N ∂ x n ∂ t 1 ( ∑ q 1 + ⋯ + q m ⩽ Q ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ G ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m x n ] ) } ) = 0 ⋮ ∑ n = 1 N ∂ x n ∂ t M ( ∑ q 1 + ⋯ + q m ⩽ Q ( − 1 ) q 1 + ⋯ + q m { [ ( D 1 ) q 1 ⋯ ( D m ) q m ] ( ∂ G ∂ [ ( D 1 ) q 1 ⋯ ( D m ) q m x n ] ) } ) = 0 (6.10) \begin{cases} \displaystyle \sum_{n=1}^N{\frac{\partial x_n}{\partial t_1}\left( \sum_{q_1+\cdots +q_m\leqslant Q}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial G}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}x_n \right]} \right) \right\}} \right)}=0\\ \vdots\\ \displaystyle \sum_{n=1}^N{\frac{\partial x_n}{\partial t_M}\left( \sum_{q_1+\cdots +q_m\leqslant Q}{\left( -1 \right) ^{q_1+\cdots +q_m}\left\{ \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m} \right] \left( \frac{\partial G}{\partial \left[ \left( \mathrm{D}_1 \right) ^{q_1}\cdots \left( \mathrm{D}_m \right) ^{q_m}x_n \right]} \right) \right\}} \right)}=0\\ \end{cases} \tag{6.10} n=1Nt1xnq1++qmQ(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmxn]G)}=0n=1NtMxnq1++qmQ(1)q1++qm{[(D1)q1(Dm)qm]([(D1)q1(Dm)qmxn]G)}=0(6.10)
虽然形式越到后面越丑陋,但我们只需要考虑低维情形,然后通过类比的方法自然推广,即可得到这些看似复杂的表达式

这些表达式看似复杂,但本质上其实很简单。本质上都是下面这一表达式的自然推广
∂ F ∂ y − d d x ∂ F ∂ y ′ + ⋯ + ( − 1 ) n d n d x n ∂ F ∂ y ( n ) = 0 (2.18) \frac{\partial F}{\partial y}-\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial F}{\partial y^\prime}+\cdots+\left( -1 \right) ^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}\frac{\partial F}{\partial y^{\left(n\right)}} = 0 \tag{2.18} yFdxdyF++(1)ndxndny(n)F=0(2.18)

  • 13
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值