BP神经网络的数学原理及其算法实现

转自http://blog.csdn.net/zhongkejingwang/article/details/44514073

BP网络的数学原理

  下面将介绍BP网络的数学原理,相比起SVD的算法推导,这个简直就是小菜一碟,不就是梯度吗求个导就完事了。首先来看看BP网络长什么样,这就是它的样子: 
  这里写图片描述
为了简单起见,这里只介绍只有一个隐层的BP网络,多个隐层的也是一样的原理。这个网络的工作原理应该很清楚了,首先,一组输入 x1x2xm 来到输入层,然后通过与隐层的连接权重产生一组数据 s1s2sn 作为隐层的输入,然后通过隐层节点的 θ() 激活函数后变为 θ(sj) 其中 sj 表示隐层的第 j 个节点产生的输出,这些输出将通过隐层与输出层的连接权重产生输出层的输入,这里输出层的处理过程和隐层是一样的,最后会在输出层产生输出 y¯j ,这里 j 是指输出层第 j 个节点的输出。这只是前向传播的过程,很简单吧?在这里,先解释一下隐层的含义,可以看到,隐层连接着输入和输出层,它到底是什么?它就是特征空间,隐层节点的个数就是特征空间的维数,或者说这组数据有多少个特征。而输入层到隐层的连接权重则将输入的原始数据投影到特征空间,比如 sj 就表示这组数据在特征空间中第 j 个特征方向的投影大小,或者说这组数据有多少份量的 j 特征。而隐层到输出层的连接权重表示这些特征是如何影响输出结果的,比如某一特征对某个输出影响比较大,那么连接它们的权重就会比较大。关于隐层的含义就解释这么多,至于多个隐层的,可以理解为特征的特征。 
  前面提到激活函数 θ() ,一般使用S形函数(即sigmoid函数),比如可以使用log-sigmoid: θ(s)=11+es  
log-sigmoid 
或者tan-sigmoid: θ(s)=eseses+es  
tan-sigmoid 
  前面说了,既然在输出层产生输出了,那总得看下输出结果对不对吧或者距离预期的结果有多大出入吧?现在就来分析一下什么东西在影响输出。显然,输入的数据是已知的,变量只有那些个连接权重了,那这些连接权重如何影响输出呢?现在假设输入层第i个节点到隐层第j个节点的连接权重发生了一个很小的变化 Δwij ,那么这个 Δwij 将会对 sj 产生影响,导致 sj 也出现一个变化 Δsj ,然后产生 Δθ(sj) ,然后传到各个输出层,最后在所有输出层都产生一个误差 Δe 。所以说,权重的调整将会使得输出结果产生变化,那么如何使这些输出结果往正确方向变化呢?这就是接下来的任务:如何调整权重。对于给定的训练样本,其正确的结果已经知道,那么由输入经过网络的输出和正确的结果比较将会有一个误差,如果能把这个误差将到最小,那么就是输出结果靠近了正确结果,就可以说网络可以对样本进行正确分类了。怎样使得误差最小呢?首先,把误差表达式写出来,为了使函数连续可导,这里最小化均方根差,定义损失函数如下: 
  

L(e)=12SSE=12j=0ke2j=12j=0k(y¯jyj)2

  用什么方法最小化 L ?跟SVD算法一样,用 随机梯度下降 。也就是对每个训练样本都使权重往其负梯度方向变化。现在的任务就是求 L 对连接权重 w 的梯度。 
  用 w1ij 表示输入层第 i 个节点到隐层第 j 个节点的连接权重, w2ij 表示隐层第 i 个节点到输出层第 j 个节点的连接权重, s1j 表示隐层第 j 个节点的输入, s2j 表示输出层第 j 个几点的输入,区别在右上角标,1表示第一层连接权重,2表示第二层连接权重。那么有 
  
Lw1ij=Ls1js1jw1ij

由于
s1j=i=1mxiw1ij

所以
s1jw1ij=xi
代入前面式子可得 
 
Lw1ij=xiLs1j

接下来只需求出 Ls1j 即可。 
由于 s1j 对所有输出层都有影响,所以
Ls1j=i=1kLs2is2is1j

由于
s2i=j=0nθ(s1j)w2ji
所以 
   
s2is1j=s2iθ(s1j)θ(s1j)s1j=w2jiθ(s1j)

代入前面的式子可得 
   
Ls1j=i=1kLs2iw2jiθ(s1j)=θ(s1j)i=1kLs2iw2ji

现在记
δli=Lsli
则隐层 δ
δ1j=θ(s1j)i=1kδ2iw2ji

输出层 δ
δ2i=Ls2i=kj=012(y¯jyj)2s2i=(y¯iyi)y¯is2i=eiy¯is2i=eiθ(s2i)

到这一步,可以看到是什么反向传播了吧?没错,就是误差 e ! 
反向传播过程是这样的:输出层每个节点都会得到一个误差 e ,把 e 作为输出层反向输入,这时候就像是输出层当输入层一样把误差往回传播,先得到输出层 δ ,然后将输出层 δ 根据连接权重往隐层传输,即前面的式子: 
δ1j=θ(s1j)i=1kδ2iw2ji

 现在再来看第一层权重的梯度: 
 
Lw1ij=xiδ1j

 第二层权重梯度: 
 
Lw2ij=Ls2js2jw2ij=δ2jθ(s1i)

 可以看到一个规律: 每个权重的梯度都等于与其相连的前一层节点的输出(即 xi θ(s1i) )乘以与其相连的后一层的反向传播的输出(即 δ1j δ2j 。如果看不明白原理的话记住这句话即可! 
 这样反向传播得到所有的 δ 以后,就可以更新权重了。更直观的BP神经网络的工作过程总结如下: 
  BP神经网络的工作过程
上图中每一个节点的输出都和权重矩阵中同一列(行)的元素相乘,然后同一行(列)累加作为下一层对应节点的输入。 
 为了代码实现的可读性,对节点进行抽象如下: 
  单个神经元内部示意图
 这样的话,很多步骤都在节点内部进行了。 
 当 θ(s)=11+es 时, 
 
θ(s)=θ(s)(1θ(s))=SOut(1SOut)

 当 θ(s)=eseses+es 时, 
 
θ(s)=1θ(s)2=1S2Out

BP网络原理部分就到这,接下来要根据上图中的神经元模型用代码实现BP网络,然后对Iris数据集进行分类。完整的代码见github: https://github.com/jingchenUSTC/ANN
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值