转自http://blog.csdn.net/zhongkejingwang/article/details/44514073
BP网络的数学原理
下面将介绍BP网络的数学原理,相比起SVD的算法推导,这个简直就是小菜一碟,不就是梯度吗求个导就完事了。首先来看看BP网络长什么样,这就是它的样子:
为了简单起见,这里只介绍只有一个隐层的BP网络,多个隐层的也是一样的原理。这个网络的工作原理应该很清楚了,首先,一组输入
x1、x2、…、xm
来到输入层,然后通过与隐层的连接权重产生一组数据
s1、s2、…、sn
作为隐层的输入,然后通过隐层节点的
θ(⋅)
激活函数后变为
θ(sj)
其中
sj
表示隐层的第
j
个节点产生的输出,这些输出将通过隐层与输出层的连接权重产生输出层的输入,这里输出层的处理过程和隐层是一样的,最后会在输出层产生输出
y¯j
,这里
j
是指输出层第
j
个节点的输出。这只是前向传播的过程,很简单吧?在这里,先解释一下隐层的含义,可以看到,隐层连接着输入和输出层,它到底是什么?它就是特征空间,隐层节点的个数就是特征空间的维数,或者说这组数据有多少个特征。而输入层到隐层的连接权重则将输入的原始数据投影到特征空间,比如
sj
就表示这组数据在特征空间中第
j
个特征方向的投影大小,或者说这组数据有多少份量的
j
特征。而隐层到输出层的连接权重表示这些特征是如何影响输出结果的,比如某一特征对某个输出影响比较大,那么连接它们的权重就会比较大。关于隐层的含义就解释这么多,至于多个隐层的,可以理解为特征的特征。
前面提到激活函数
θ(⋅)
,一般使用S形函数(即sigmoid函数),比如可以使用log-sigmoid:
θ(s)=11+e−s
或者tan-sigmoid:
θ(s)=es−e−ses+e−s
前面说了,既然在输出层产生输出了,那总得看下输出结果对不对吧或者距离预期的结果有多大出入吧?现在就来分析一下什么东西在影响输出。显然,输入的数据是已知的,变量只有那些个连接权重了,那这些连接权重如何影响输出呢?现在假设输入层第i个节点到隐层第j个节点的连接权重发生了一个很小的变化
Δwij
,那么这个
Δwij
将会对
sj
产生影响,导致
sj
也出现一个变化
Δsj
,然后产生
Δθ(sj)
,然后传到各个输出层,最后在所有输出层都产生一个误差
Δe
。所以说,权重的调整将会使得输出结果产生变化,那么如何使这些输出结果往正确方向变化呢?这就是接下来的任务:如何调整权重。对于给定的训练样本,其正确的结果已经知道,那么由输入经过网络的输出和正确的结果比较将会有一个误差,如果能把这个误差将到最小,那么就是输出结果靠近了正确结果,就可以说网络可以对样本进行正确分类了。怎样使得误差最小呢?首先,把误差表达式写出来,为了使函数连续可导,这里最小化均方根差,定义损失函数如下:
用什么方法最小化 L ?跟SVD算法一样,用 随机梯度下降 。也就是对每个训练样本都使权重往其负梯度方向变化。现在的任务就是求 L 对连接权重 w 的梯度。
用 w1ij 表示输入层第 i 个节点到隐层第 j 个节点的连接权重, w2ij 表示隐层第 i 个节点到输出层第 j 个节点的连接权重, s1j 表示隐层第 j 个节点的输入, s2j 表示输出层第 j 个几点的输入,区别在右上角标,1表示第一层连接权重,2表示第二层连接权重。那么有
由于
所以
接下来只需求出 ∂L∂s1j 即可。
由于 s1j 对所有输出层都有影响,所以
由于
代入前面的式子可得
现在记
输出层 δ 为
到这一步,可以看到是什么反向传播了吧?没错,就是误差 e !
反向传播过程是这样的:输出层每个节点都会得到一个误差 e ,把 e 作为输出层反向输入,这时候就像是输出层当输入层一样把误差往回传播,先得到输出层 δ ,然后将输出层 δ 根据连接权重往隐层传输,即前面的式子:
现在再来看第一层权重的梯度:
第二层权重梯度:
可以看到一个规律: 每个权重的梯度都等于与其相连的前一层节点的输出(即 xi 和 θ(s1i) )乘以与其相连的后一层的反向传播的输出(即 δ1j 和 δ2j ) 。如果看不明白原理的话记住这句话即可!
这样反向传播得到所有的 δ 以后,就可以更新权重了。更直观的BP神经网络的工作过程总结如下:
上图中每一个节点的输出都和权重矩阵中同一列(行)的元素相乘,然后同一行(列)累加作为下一层对应节点的输入。
为了代码实现的可读性,对节点进行抽象如下:
这样的话,很多步骤都在节点内部进行了。
当 θ(s)=11+e−s 时,
当 θ(s)=es−e−ses+e−s 时,
BP网络原理部分就到这,接下来要根据上图中的神经元模型用代码实现BP网络,然后对Iris数据集进行分类。完整的代码见github: https://github.com/jingchenUSTC/ANN