KMP字符串匹配算法

KMP字符串匹配算法

字符串匹配算法

首先,我们最容易想到的字符串匹配算法就是暴力匹配算法,那么我们首先就来看一下什么是暴力匹配。

暴力匹配算法

暴力的字符串匹配算法很容易写,我们首先来看一下它的运行逻辑:

 private int Search(string pat, string txt)
    {
        int M = pat.Length;
        int N = txt.Length;

        for (int i = 0; i < N-M; i++)
        {
            int j;
            for (j = 0; j < M; j++)
            {
                if (pat[j]!=txt[i+j])
                {
                    break;
                }
            }
            //pat全部匹配
            if (j==M)
            {
                return i;
            }
        }
        //txt中不存在pat子串
        return -1;
    }

对于这种暴力匹配算法,当检测到不匹配的字符时,pat和txt都要同时的回退指针,这在字符串中有很多重复字符的时候,显的异常繁琐。
而KMP的不同之处就在于,它会花费空间来记录一些信息,因此在上述情况中就会显的很聪明。

KMP算法

KMP算法永不回退txt的指针,而是借助DP数组(关于DP数组大家有兴趣的可以自行去查找一下动态规划)中储存的信息把pat移动到正确的位置上继续进行匹配。
下面请看详细代码:

  private int[,] dp;
    private string pat;
    private void Start()
    {
        KMP("aaab");
        int pos = Search("aaacaaab");
        Debug.Log("Pos索引位置 :" + pos);
        //此处输出匹配字符串索引位置,若未匹配,输出-1
    }
    private void KMP(string pat)
    {
        this.pat = pat;
        int M = pat.Length;
        char[] charPat = pat.ToCharArray();
        //dp[状态][字符]=下个状态
        dp = new int[M, 256];
        //base case
        //检测到pat字符串首位字符的时候才会跳转到状态1
        dp[0, charPat[0]] = 1;
        //影子状态初始为0
        int X = 0;
        //当前状态j从1开始
        for (int j = 1; j < M; j++)
        {
            for (int c = 0; c < 256; c++)
            {
                if (charPat[j] == c)
                {
                    dp[j, c] = j + 1;
                }
                else
                {
                    dp[j, c] = dp[X, c];
                }
            }
            //更新影子状态
            X = dp[X, charPat[j]];
        }

    }
    /// <summary>
    /// 返回匹配子串的索引开始位置
    /// </summary>
    /// <param name="txt"></param>
    /// <returns></returns>
    private int Search(string txt)
    {
        int N = txt.Length;
        int M = pat.Length;
        //pat初始状态为0
        int j = 0;
        for (int i = 0; i < N; i++)
        {
            //计算pat的下一个状态
            j = dp[j, txt.ToCharArray()[i]];
            if (j==M)
            {
                //达到终止态,返回结果
                return i - M + 1;
            }

        }
        //未达到终止态,匹配失败
        return -1;


    }

当前算法可适用于精确搜索功能,模糊搜索期待下回分解!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二十一、Fly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值