自动生成格雷码算法

典型的二进制格雷码(Binary Gray Code)简称格雷码,在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code),另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码反射码

自动生成格雷码的算法主要利用以下规则:

1. 1位格雷码有两个码字。
2. (n+1)位格雷码中的前2n个码字等于n位格雷码的码字,按顺序书写,加前缀0。
3. (n+1)位格雷码中的后2n个码字等于n位格雷码的码字,按逆序书写,加前缀1。
4. (n+1)位格雷码的集合 = n位格雷码集合(顺序)加前缀0 + n位格雷码集合(逆序)加前缀1。

简而言之,就是后面的格雷码等于其相邻的前面的格雷码按顺序书写,加前缀0,再按逆序书写,加前缀1如下图所示:


按照这个思路很容易的实现代码:

[cpp]  view plain  copy
  1. void generaterGrayCode(int n)  
  2. {  
  3.     vector<string> grayCodeVec;  
  4.   
  5.     //当n为1的时候的格雷码  
  6.     string aa = "0";  
  7.     string bb = "1";  
  8.     grayCodeVec.push_back(aa);  
  9.     grayCodeVec.push_back(bb);  
  10.   
  11.     //产生大于两位的格雷码,n位格雷码的数量为2^n个  
  12.     if (n > 1)  
  13.     {  
  14.         for (int i = 2; i <= n; i++)  
  15.         {  
  16.             //设置一个临时存储空间来存储n-1位格雷码  
  17.             vector<string> tempGrayCodeVec;  
  18.             for (size_t k = 0; k < grayCodeVec.size(); k++)  
  19.             {  
  20.                 tempGrayCodeVec.push_back(grayCodeVec[k]);  
  21.             }  
  22.   
  23.             //在前面产生的n-1位格雷码前面添加一位数0产生2^(n-1)个n位格雷码,并替换掉原来的n-1位格雷码  
  24.             int tempGrayCodeVecSize = tempGrayCodeVec.size();  
  25.             for (int j = 0; j < tempGrayCodeVecSize; j++)  
  26.             {  
  27.                 string tempbitzero = "0";  
  28.                 tempbitzero += tempGrayCodeVec[j];  
  29.                 grayCodeVec[j] = tempbitzero;  
  30.             }  
  31.   
  32.             //将前面产生的n-1位格雷码的顺序反转  
  33.             //在反转后的n-1位格雷码前面添加一位数1产生剩下2^(n-1)个n位格雷码,并存储起来  
  34.             for (int jj = tempGrayCodeVecSize-1; jj >= 0; jj--)  
  35.             {  
  36.                 string tempbitone = "1";  
  37.                 tempbitone += tempGrayCodeVec[jj];  
  38.                 grayCodeVec.push_back(tempbitone);  
  39.             }  
  40.             //释放掉临时存储空间  
  41.             tempGrayCodeVec.clear();  
  42.         }  
  43.     }  
  44.   
  45.     //输出n位格雷码  
  46.     for (size_t i = 0; i < grayCodeVec.size(); i++)  
  47.     {  
  48.         cout << grayCodeVec[i] << endl;  
  49.     }  
  50.     cout << endl;  
  51. }  
实验二 递归算法设计与应用 一. 实验目的和要求 1. 加深对递归算法的理解,并针对具体问题设计算法; 2. 分析算法的复杂性,寻找比较高效的算法,并实现。 3. 分析格雷码问题,并设计递归算法求解之。 二. 基本原理 递归是一种重要的程序设计方法。使用递归方法有时可使算法简洁明了,易于设计。 递归指算法自己调用自己, 有直接递归与间接递归两种。 递归方法用于解决一类满足递归关系的问题。即:对原问题的求解可转化为对其性质相同的子问题的求解。 三. 该类算法设计与实现的要点 1. 递归关系(特性):产生递归的基础。 当算法中某步骤要通过解性质相同的子问题实现时,该步骤用递归调用实现。 2. 递归出口(结束条件):确定递归的层数。 当子问题的规模充分小时可直接求解时,递归结束。 3. 参数设置:参数表示了原问题及其不同的子问题。 参数表示了子问题的大小和状态,以区别原问题以及不同层次的子问题。 4. 算法功能的设定:严格规定递归算法要解决什么样的问题。 算法功能的正确设定是保证递归过程正确进行的前提。 四. 实验内容――格雷码问题 1.问题描述 对于给定的正整数n,格雷码为满足如下条件的一个编码序列: (1) 序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2) 序列中无相同的编码。 (3) 序列中位置相邻的两个编码恰有一位不同。 例如:n=2时的格雷码为:{00, 01, 11, 10}。 设计求格雷码的递归算法并实现。 2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1769题 输入:输入的第一行是一个正整数m,表示测试例个数。接下来几行是m个测试例的数据,每个测试例的数据由一个正整数n组成。 输出:对于每个测试例n,输出2n个长度为n的格雷码。(为方便查看,在每个格雷码内,两个位之间用一个空格隔开,如,00输出为:0 0)。两个测试例的输出数据之间用一个空行隔开,最后一个测试例后无空行。 3. 测试数据 输入:2 4 5 输出:0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 4. 设计与实现的提示 长度为n的格雷码是由长度为n-1的格雷码变换而成的。 可以用数组或字符串来存储格雷码。注意:对于较大的正整数n,用数组存储容易引起死机。 按照定义2n个长度为n的格雷码序列是不唯一的,若在ACM平台上提交程序,要求输出的编码序列与给出的范例具有相同的规律。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值