7-1 树的同构

7-1 树的同构

分数 20
作者 陈越
单位 浙江大学

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
在这里插入图片描述

现给定两棵树,请你判断它们是否是同构的。

输入格式:

输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1:

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No

代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
C++ (g++)

思路:

法一:
题中说树的同构就是左右孩子交换,那么左右孩子的ASCII值之和就是不变的,是一直相等的。
但要注意只有一个节点并且不相等的情况
法二:
定义一个结构体,变量有根结点的值,左孩子,右孩子。
Tree CreateTree(TreeNode a[])函数
用于创建树:
输入n个节点的值,根结点的值,左孩子节点的编号,右孩子节点的编号。
如果左孩子为‘-’,左孩子为空
否则左孩子设置为left,将左孩子的编号对应的check数组置为1
同理,右孩子一样。
然后从0开始遍历check数组,寻找根结点。。如果等于0的话,跳出循环。
那么根结点记为i,返回根结点的下标。
bool isomorphism(Tree t1,Tree t2)函数
用于判断树是否同构:
~两个树都为空,同构
~只有一个树为空,不同构
~如果两个树的根结点值不同,不同构
~如果两个树的左孩子都为空,那么返回对右孩子判断是否同构
~如果两个树左孩子的值都相等且不为空,那么返回对左左求同构,右右求同构
~否则返回左右右左求同构

AC代码:

法一:


#include<bits/stdc++.h>
using namespace std;
struct node
{
    char id;
    int left;
    int right;
};
int n1,n2;
int main()
{
    cin>>n1;
    vector<node> v1(n1);
    for(int i=0;i<n1;i++)
    {
        char a,b,c;
        cin>>a>>b>>c;
        v1[i].id=a;
        v1[i].left=(b=='-'?-1:b-'0');
        v1[i].right=(c=='-'?-1:c-'0');
    }
    cin>>n2;
    vector<node> v2(n2);
    for(int i=0;i<n2;i++)
    {
        char a,b,c;
        cin>>a>>b>>c;
        v2[i].id=a;
        v2[i].left=(b=='-'?-1:b-'0');
        v2[i].right=(c=='-'?-1:c-'0');
    }
    if(n1==1&&n2==1&&v1[0].id!=v2[0].id){
        cout<<"No";
        return 0;
    }
    //for循环里判断的必须至少第一个都相等
    for(int i=0;i<v1.size();i++)
    {
        int value1=0,value2=0;
        for(int j=0;j<v2.size();j++)
        {
            if(v1[i].id==v2[j].id)
            {
                if(v1[i].left!=-1)
                    value1+=v1[v1[i].left].id;
                if(v1[i].right!=-1)
                    value1+=v1[v1[i].right].id;
                if(v2[j].left!=-1)
                    value2+=v2[v2[j].left].id;
                if(v2[j].right!=-1)
                    value2+=v2[v2[j].right].id;
            }
            if(value1!=value2){
                cout<<"No";
                return 0;
            }
        }
    }
    cout<<"Yes";
    return 0;
}

法二:

#include<bits/stdc++.h>
using namespace std;
#define null -1
#define Tree int

struct TreeNode{
    char data;
    int lchild;
    int rchild;
}t1[10],t2[10];

Tree CreateTree(TreeNode a[])
{
    int n,i;
    cin>>n;
    if(!n) return null;
    char left,right;
    int check[10]={0};
    for(i=0;i<n;i++)
    {
        cin>>a[i].data>>left>>right;
        if(left=='-') a[i].lchild=null;
        else
        {
            a[i].lchild=left-'0';
            check[a[i].lchild]=1;
        }
        if(right=='-') a[i].rchild=null;
        else
        {
            a[i].rchild=right-'0';
            check[a[i].rchild]=1;
        }
    }
    for(i=0;i<n;i++)
    {
        if(check[i]==0) return i;
    }
}

bool isomorphism(Tree r1,Tree r2)
{
    if(r1==null&&r2==null) return true;
    if((r1!=null&&r2==null)||(r1==null&&r2!=null)) return false;
    if(t1[r1].data!=t2[r2].data) return false;
    if(t1[r1].lchild==null&&t2[r2].lchild==null) return isomorphism(t1[r1].rchild,t2[r2].rchild);
    if((t1[t1[r1].lchild].data==t2[t2[r2].lchild].data)&&(t1[r1].lchild!=null&&t2[r2].lchild!=null))
        return isomorphism(t1[r1].lchild,t2[r2].lchild)&&isomorphism(t1[r1].rchild,t2[r2].rchild);
    else
        return isomorphism(t1[r1].lchild,t2[r2].rchild)&&isomorphism(t1[r1].rchild,t2[r2].lchild);
    return 0;
}

int main()
{
    Tree r1=CreateTree(t1),r2=CreateTree(t2);
    if(isomorphism(r1,r2)) cout<<"Yes";
    else cout<<"No";
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值