06-图1 列出连通集

06-图1 列出连通集

分数 25
作者 陈越
单位 浙江大学

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v1​ v2​ … vk​ }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
C++ (g++)

思路:

本题重在掌握dfs和bfs算法。
剩下的按格式输入输出即可。
dfs用递归实现,bfs用队列实现即可。

AC代码:

#include<bits/stdc++.h>
using namespace std;

int graph[10][10];
int vis[10];
int n,e;

void dfs(int cur){
   vis[cur]=1;
    cout<<cur<<" ";
    for(int i=0;i<n;i++){
        if(graph[cur][i]&&!vis[i])
            dfs(i);
    }
}

void bfs(int cur){
    queue<int> q;
    vis[cur]=1;
    q.push(cur);
    while(!q.empty()){
        int t=q.front();
        cout<<t<<" ";
        q.pop();
        for(int i=0;i<n;i++){
            if(graph[t][i]&&!vis[i]){
                q.push(i);
                vis[i]=1;
            }
        }
    }
}

int main(){
    cin>>n>>e;
    for(int i=0;i<e;i++){
        int v1,v2;
        cin>>v1>>v2;
        graph[v1][v2]=graph[v2][v1]=1;
    }
    for(int i=0;i<n;i++){
        if(!vis[i]){
            cout<<"{ ";
            dfs(i);
            cout<<"}"<<endl;
        }
    }
    memset(vis,0,sizeof(vis));
    for(int i=0;i<n;i++){
        if(!vis[i]){
            cout<<"{ ";
            bfs(i);
            cout<<"}"<<endl;
        }
    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值