06-图1 列出连通集
分数 25
作者 陈越
单位 浙江大学
给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2 … vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
C++ (g++)
思路:
本题重在掌握dfs和bfs算法。
剩下的按格式输入输出即可。
dfs用递归实现,bfs用队列实现即可。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int graph[10][10];
int vis[10];
int n,e;
void dfs(int cur){
vis[cur]=1;
cout<<cur<<" ";
for(int i=0;i<n;i++){
if(graph[cur][i]&&!vis[i])
dfs(i);
}
}
void bfs(int cur){
queue<int> q;
vis[cur]=1;
q.push(cur);
while(!q.empty()){
int t=q.front();
cout<<t<<" ";
q.pop();
for(int i=0;i<n;i++){
if(graph[t][i]&&!vis[i]){
q.push(i);
vis[i]=1;
}
}
}
}
int main(){
cin>>n>>e;
for(int i=0;i<e;i++){
int v1,v2;
cin>>v1>>v2;
graph[v1][v2]=graph[v2][v1]=1;
}
for(int i=0;i<n;i++){
if(!vis[i]){
cout<<"{ ";
dfs(i);
cout<<"}"<<endl;
}
}
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++){
if(!vis[i]){
cout<<"{ ";
bfs(i);
cout<<"}"<<endl;
}
}
return 0;
}