定义
完全二叉树是由满二叉树引出来的。对于深度为K的,由n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中编号从1到n的节点一一对应时称为完全二叉树。
特点
①若二叉树的深度为h,除了第h层之外,其余各层的结点数都达到最大个数,第h层所有的节点都连续集中在最左边。
②一棵二叉树至多只有最下面一层上的节点的度数可以小于2,并且最下层上的节点都集中在该层最左边的若干位置上,而在最后一层上,右边的若干节点缺失的二叉树,此二叉树称为完全二叉树。
③叶子节点只可能在最大的两层上出现,对于任意节点,其右分支下的子孙最大层次为L,则其左分支下的子孙的最大层次必为L或者L+1
③完全二叉树通常用数组而不是链表存储
④完全二叉树第i层最多有 2^(i-1)个节点,共i层的完全二叉树最多有2 ^(i)-1个节点
⑤只允许最后一层有空缺节点且空缺在右边,即叶子节点只能在层次最大的两层上出现。
⑥对于任意节点,如果其右子树的深度为j,则其左子树的深度必须为j或者j+1。即度为1的点只有1个或者0个。
判断方法:
叶子节点只能出现在最下层和次下层,并且最下层的节点都集中在该层最左边的若干位置的二叉树。