leetcode 72: 编辑距离

参考liweiwei题解:. - 力扣(LeetCode)

题目

解题思路:

直接思考,从一个字符串到另一个字符串的变化,是一步一步来的,可以分解

例如:

  • horse -> rorse (将 'h' 替换为 'r')
  • rorse -> rose (删除 'r')
  • rose -> ros (删除 'e')

可以想到动态规划

第一步: 分析数组含义

dp[i][j] 为word1[0..i]到word2[0...j]最少步骤 --- 将word1变为word2最少步骤拆分为子问题

第二步: 创建状态转移方程

第一种情况: 最后一个字符相等的情况

由于最后一个字符相等,则可以直接考虑除最后一个字符之前的情况

因此dp[i][j] = dp[i-1][j-1]

第二种情况: 最后一个字符并不相等

由于最后一个字符不相等,我们得将他变为相等.

这样从字符串开头时,将会一步一步保证引用之前的字符串已经相等

分析三种操作
插入

插入一个字符,使得两个字符串最后一个字符相等

正常来说应该是dp[i][j] = dp[i + 1][j] + 1

但由于我们是进行的i(外层),j(内层),因此i+1的下标是空的,没有数据

word1插入字符,相当于接下来要比较word1[0....i]和word2[0...j-1]

因此可以将方程改为dp[i][j] = dp[i][j-1] + 1

删除

删去word1[i]的操作可以视作为word2[j+1]插入word1[i]字符,使得他们最后一个字符相等

例如: word1 doge,word2 dog,word1删去'e'和word2加上'e'结果是相同的

因此可以视作是word2加上一个字符,只需比较word2[j]和word1[i-1]即可

修改

修改十分好理解,即word1[i] 和word2[j]以强制相同,则只需得知word1[i-1]和word2[j-1]之前的字符串编辑距离即可

第三步: 考虑初始化

从一个字符串变成空字符串,非空字符串的长度就是编辑距离。因此初始化逻辑如下:

for (int i = 0; i <= len1; i++) {
    dp[i][0] = i;
}

for (int j = 0; j <= len2; j++) {
    dp[0][j] = j;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值