【题解】Luogu-P4240 毒瘤之神的考验

P4240 毒瘤之神的考验

Description

  • 多测, t t t 组数据。

  • 每次给定两个整数 n , m n, m n,m,请求出
    [ ∑ i = 1 n ∑ j = 1 m φ ( i j ) ]   m o d   998244353 \left[ \sum_{i = 1}^n \sum_{j = 1}^m \varphi(ij) \right] \bmod 998244353 [i=1nj=1mφ(ij)]mod998244353

  • 1 ≤ t ≤ 1 0 4 1\le t\le 10^4 1t104 1 ≤ n , m ≤ 1 0 5 1\le n, m\le 10^5 1n,m105

Solution

引理:
φ ( i j ) = φ ( i ) φ ( j ) gcd ⁡ ( i , j ) φ ( gcd ⁡ ( i , j ) ) \varphi(ij) = \dfrac{\varphi(i) \varphi(j) \gcd(i, j)}{\varphi(\gcd(i, j))} φ(ij)=φ(gcd(i,j))φ(i)φ(j)gcd(i,j)

证明:
φ ( i ) φ ( j ) gcd ⁡ ( i , j ) = i ∏ p 1 ∈ P , p 1 ∣ i p 1 − 1 p 1 ⋅ j ∏ p 2 ∈ P , p 2 ∣ j p 2 − 1 p 2 ⋅ gcd ⁡ ( i , j ) = i j gcd ⁡ ( i , j ) ( ∏ p 1 ∈ P , p 1 ∣ i p 1 − 1 p 1 ∏ p 2 ∈ P , p 2 ∣ j p 2 − 1 p @ ) \begin{aligned} \varphi(i) \varphi(j) \gcd(i, j) & = i \prod_{p_1\in \mathbb{P}, p_1\mid i} \dfrac{p_1 - 1}{p_1} \cdot j \prod_{p_2\in \mathbb{P}, p_2\mid j} \dfrac{p_2 - 1}{p_2} \cdot \gcd(i, j) \\ & = ij \gcd(i, j) \left(\prod_{p_1\in \mathbb{P}, p_1\mid i} \dfrac{p_1 - 1}{p_1} \prod_{p_2\in \mathbb{P}, p_2\mid j} \dfrac{p_2 - 1}{p_@} \right) \end{aligned} φ(i)φ(j)gcd(i,j)=ip1P,p1ip1p11jp2P,p2jp2p21gcd(i,j)=ijgcd(i,j)p1P,p1ip1p11p2P,p2jp@p21
你会发现所有 gcd ⁡ ( i , j ) \gcd(i, j) gcd(i,j) 的质因数都被算了 2 2 2 次。
= ( i j ∏ p 1 ∈ P , p 1 ∣ i j p 1 − 1 p 1 ) ⋅ ( gcd ⁡ ( i , j ) ∏ p 2 ∈ P , p 2 ∣ gcd ⁡ ( i , j ) p 2 − 1 p 2 ) = φ ( i j ) φ ( gcd ⁡ ( i , j ) ) \begin{aligned} & = \left(ij\prod_{p_1\in \mathbb{P}, p_1\mid ij} \dfrac{p_1 - 1}{p_1} \right) \cdot \left(\gcd(i, j) \prod_{p_2\in \mathbb{P}, p_2\mid \gcd(i, j)} \dfrac{p_2 - 1}{p_2} \right) \\ & = \varphi(ij) \varphi(\gcd(i, j)) \end{aligned} =ijp1P,p1ijp1p11gcd(i,j)p2P,p2gcd(i,j)p2p21=φ(ij)φ(gcd(i,j))
φ ( gcd ⁡ ( i , j ) ) \varphi(\gcd(i, j)) φ(gcd(i,j)) 除过去即可。

不妨设 n ≤ m n\le m nm,根据引理,有
a n s = ∑ i = 1 n ∑ j = 1 m φ ( i ) φ ( j ) gcd ⁡ ( i , j ) φ ( gcd ⁡ ( i , j ) ) = ∑ d = 1 n ∑ i = 1 n ∑ j = 1 m φ ( i ) φ ( j ) d φ ( d ) [ gcd ⁡ ( i , j ) = d ] = ∑ d = 1 n d φ ( d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ φ ( i d ) φ ( j d ) [ gcd ⁡ ( i , j ) = 1 ] = ∑ d = 1 n d φ ( d ) ∑ i = 1 ⌊ n d ⌋ φ ( i d ) ∑ j = 1 ⌊ m d ⌋ φ ( j d ) [ gcd ⁡ ( i , j ) = 1 ] = ∑ d = 1 n d φ ( d ) ∑ i = 1 ⌊ n d ⌋ φ ( i d ) ∑ j = 1 ⌊ m d ⌋ φ ( j d ) ∑ k ∣ gcd ⁡ ( i , j ) μ ( k ) = ∑ d = 1 n d φ ( d ) ∑ k = 1 ⌊ n d ⌋ μ ( k ) ∑ i = 1 ⌊ n d k ⌋ φ ( i d k ) ∑ j = 1 ⌊ m d k ⌋ φ ( j d k ) = ∑ T = 1 n ∑ d ∣ T d φ ( d ) μ ( T d ) ∑ i = 1 ⌊ n T ⌋ φ ( i T ) ∑ j = 1 ⌊ m T ⌋ φ ( j T ) \begin{aligned} ans & = \sum_{i = 1}^n \sum_{j = 1}^m \dfrac{\varphi(i) \varphi(j) \gcd(i, j)}{\varphi(\gcd(i, j))} \\ & = \sum_{d = 1}^n \sum_{i = 1}^n \sum_{j = 1}^m \dfrac{\varphi(i) \varphi(j) d}{\varphi(d)} [\gcd(i, j) = d] \\ & = \sum_{d = 1}^n \dfrac{d}{\varphi(d)} \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{m}{d}\right\rfloor} \varphi(id) \varphi(jd) [\gcd(i, j) = 1] \\ & = \sum_{d = 1}^n \dfrac{d}{\varphi(d)} \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \varphi(id) \sum_{j = 1}^{\left\lfloor\frac{m}{d}\right\rfloor} \varphi(jd) [\gcd(i, j) = 1] \\ & = \sum_{d = 1}^n \dfrac{d}{\varphi(d)} \sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \varphi(id) \sum_{j = 1}^{\left\lfloor\frac{m}{d}\right\rfloor} \varphi(jd) \sum_{k\mid \gcd(i, j)} \mu(k) \\ & = \sum_{d = 1}^n \dfrac{d}{\varphi(d)} \sum_{k = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(k) \sum_{i = 1}^{\left\lfloor\frac{n}{dk}\right\rfloor} \varphi(idk) \sum_{j = 1}^{\left\lfloor\frac{m}{dk}\right\rfloor} \varphi(jdk) \\ & = \sum_{T = 1}^n \sum_{d\mid T} \dfrac{d}{\varphi(d)} \mu\left(\dfrac{T}{d}\right) \sum_{i = 1}^{\left\lfloor\frac{n}{T}\right\rfloor} \varphi(iT) \sum_{j = 1}^{\left\lfloor\frac{m}{T}\right\rfloor} \varphi(jT) \end{aligned} ans=i=1nj=1mφ(gcd(i,j))φ(i)φ(j)gcd(i,j)=d=1ni=1nj=1mφ(d)φ(i)φ(j)d[gcd(i,j)=d]=d=1nφ(d)di=1dnj=1dmφ(id)φ(jd)[gcd(i,j)=1]=d=1nφ(d)di=1dnφ(id)j=1dmφ(jd)[gcd(i,j)=1]=d=1nφ(d)di=1dnφ(id)j=1dmφ(jd)kgcd(i,j)μ(k)=d=1nφ(d)dk=1dnμ(k)i=1dknφ(idk)j=1dkmφ(jdk)=T=1ndTφ(d)dμ(dT)i=1Tnφ(iT)j=1Tmφ(jT)
其中
f ( n ) = ∑ d ∣ n d   μ ( n d ) φ ( d ) f(n) = \sum_{d\mid n} \dfrac{d\, \mu\left(\dfrac{n}{d}\right)}{\varphi(d)} f(n)=dnφ(d)dμ(dn)
不是积性函数(它甚至不一定是整数),直接预处理逆元 Θ ( n ln ⁡ n ) \Theta(n\ln n) Θ(nlnn) 计算。

对于
∑ i = 1 ⌊ n T ⌋ φ ( i T ) ∑ j = 1 ⌊ m T ⌋ φ ( j T ) \sum_{i = 1}^{\left\lfloor\frac{n}{T}\right\rfloor} \varphi(iT) \sum_{j = 1}^{\left\lfloor\frac{m}{T}\right\rfloor} \varphi(jT) i=1Tnφ(iT)j=1Tmφ(jT)
发现这东西带两个参数,令
g ( k , n ) = ∑ i = 1 n φ ( i k ) g(k, n) = \sum_{i = 1}^n \varphi(ik) g(k,n)=i=1nφ(ik)
你有递推式
g ( k , n ) = g ( k , n − 1 ) + φ ( n k ) g(k, n) = g(k, n - 1) + \varphi(nk) g(k,n)=g(k,n1)+φ(nk)
而此处的 n k ≤ n (题目中的   n ) nk\le n\textsf{(题目中的 } n \textsf{)} nkn(题目中的 n),也可以 Θ ( n ln ⁡ n ) \Theta(n\ln n) Θ(nlnn) 预处理, g g g 数组用 vector 存。

代回去
a n s = ∑ T = 1 n f ( T ) g ( T , ⌊ n T ⌋ ) g ( T , ⌊ m T ⌋ ) ans = \sum_{T = 1}^n f(T) g\left(T, \left\lfloor\dfrac{n}{T}\right\rfloor \right) g\left(T, \left\lfloor\dfrac{m}{T}\right\rfloor \right) ans=T=1nf(T)g(T,Tn)g(T,Tm)
这个 g g g 带一个 T T T,无法整除分块,只能暴力算。

此时是 O ( n ln ⁡ n ) \Omicron(n\ln n) O(nlnn) 的预处理, O ( n ) \Omicron(n) O(n) 的单次回答,过不去。



h ( n , m , l ) = ∑ T = 1 l f ( T ) g ( T , n ) g ( T , m ) h(n, m, l) = \sum_{T = 1}^l f(T) g\left(T, n \right) g\left(T, m \right) h(n,m,l)=T=1lf(T)g(T,n)g(T,m)
这样在整除分块中
h ( ⌊ n l ⌋ , ⌊ m l ⌋ , r ) − h ( ⌊ n l ⌋ , ⌊ m l ⌋ , l − 1 ) h\left(\left\lfloor\dfrac{n}{l}\right\rfloor, \left\lfloor\dfrac{m}{l}\right\rfloor, r \right) - h\left(\left\lfloor\dfrac{n}{l}\right\rfloor, \left\lfloor\dfrac{m}{l}\right\rfloor, l - 1 \right) h(ln,lm,r)h(ln,lm,l1)
又有递推式
h ( n , m , l ) = h ( n , m , l − 1 ) + f ( l ) g ( l , n ) g ( l , m ) h(n, m, l) = h(n, m, l - 1) + f(l) g(l, n) g(l, m) h(n,m,l)=h(n,m,l1)+f(l)g(l,n)g(l,m)
max ⁡ ( n , m ) l ≤ n (题目中的   n ) \max(n, m) l\le n \textsf{(题目中的 } n \textsf{)} max(n,m)ln(题目中的 n)

h h h 数组同样用 vector 存。

此时是
O ( n ∑ i = 1 n n i ) = O ( n ⋅ ∫ 1 n n x   d x ) = O ( n 2 ln ⁡ n ) \begin{aligned} \Omicron\left(n \sum_{i = 1}^n \dfrac{n}{i} \right) & = \Omicron\left(n \cdot \int_1^n \dfrac{n}{x} \, dx \right) \\ & = \Omicron(n^2 \ln n) \end{aligned} O(ni=1nin)=O(n1nxndx)=O(n2lnn)
的预处理, O ( n ) \Omicron(\sqrt{n}) O(n ) 的单次回答,预处理会 MLE + TLE \text{MLE} + \text{TLE} MLE+TLE


既然两种方法都不行,那么自然想到 用根号分治来平衡时间

设阈值为 k k k,表示对于 ≤ k \le k k 的部分预处理。

于是当 ⌊ m l ⌋ ≤ k \left\lfloor\dfrac{m}{l}\right\rfloor \le k lmk,即 l > ⌊ m k ⌋ l > \left\lfloor\dfrac{m}{k}\right\rfloor l>km 的部分用已经预处理过的 h h h 整除分块算,当 l ≤ ⌊ m k ⌋ l \le \left\lfloor\dfrac{m}{k}\right\rfloor lkm 时直接暴力算。

  • 暴力: O ( n ln ⁡ n ) + O ( t n k ) \Omicron(n\ln n) + \Omicron\left(\dfrac{tn}{k} \right) O(nlnn)+O(ktn)
  • 分块: O ( n k ln ⁡ k ) + O ( t n ) \Omicron(nk \ln k) + \Omicron(t\sqrt{n}) O(nklnk)+O(tn )

总时间复杂度为 O ( n k ln ⁡ k + t ( n k + n ) ) \Omicron\left(nk \ln k + t\left(\dfrac{n}{k} + \sqrt{n} \right) \right) O(nklnk+t(kn+n )),提个公因数就是 k ln ⁡ k + t k k\ln k + \dfrac{t}{k} klnk+kt 最小。

写个程序去算

	int t = 1e4;
	int ans = 0x3f3f3f3f, pos = 0;
	for (int k = 1; k <= t; k++)
	{
		int res = k * log(k) + t / k;
		if (res < ans)
		{
			ans = res, pos = k;
		}
	}
	printf("%d %d\n", ans, pos);

输出

392 47

所以取 k = 47 k = 47 k=47

空间复杂度为 O ( n k ln ⁡ k ) \Omicron(nk\ln k) O(nklnk)

然而实测 k k k 60 ∼ 70 60\sim 70 6070 更快(

Code

// 18 = 9 + 9 = 18.
#include <iostream>
#include <cstdio>
#include <vector>
#define Debug(x) cout << #x << "=" << x << endl
typedef long long ll;
using namespace std;

const int MAXN = 1e5 + 5;
const int N = 1e5;
const int MAXK = 47 + 5;
const int K = 47;
const int MOD = 998244353;

typedef int arr[MAXN];

int add(int a, int b)
{
	return (a + b) % MOD;
}

int sub(int a, int b)
{
	return (a - b + MOD) % MOD;
}

int mul(int a, int b)
{
	return (ll)a * b % MOD;
}

int qpow(int a, int b)
{
	int base = a, ans = 1;
	while (b)
	{
		if (b & 1)
		{
			ans = (ll)ans * base % MOD;
		}
		base = (ll)base * base % MOD;
		b >>= 1;
	}
	return ans;
}

int inv(int a)
{
	return qpow(a, MOD - 2);
}

arr p, mu, phi, phi_pro, phi_pro_inv, phi_inv, f;
bool vis[MAXN];
vector<int> g[MAXN], h[MAXK][MAXK];

void pre()
{
	mu[1] = phi[1] = 1;
	for (int i = 2; i <= N; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			mu[i] = MOD - 1;
			phi[i] = i - 1;
		}
		for (int j = 1; j <= p[0] && i * p[j] <= N; j++)
		{
			vis[i * p[j]] = true;
			if (i % p[j] == 0)
			{
				mu[i * p[j]] = 0;
				phi[i * p[j]] = phi[i] * p[j];
				break;
			}
			mu[i * p[j]] = MOD - mu[i];
			phi[i * p[j]] = phi[i] * phi[p[j]];
		}
	}
	
	phi_pro[0] = phi_inv[1] = 1;
	for (int i = 1; i <= N; i++)
	{
		phi_pro[i] = mul(phi_pro[i - 1], phi[i]);
	}
	phi_pro_inv[N] = inv(phi_pro[N]);
	for (int i = N - 1; i >= 1; i--)
	{
		phi_pro_inv[i] = mul(phi_pro_inv[i + 1], phi[i + 1]);
		phi_inv[i + 1] = mul(phi_pro_inv[i + 1], phi_pro[i]);
	}
	
	for (int i = 1; i <= N; i++)
	{
		for (int j = 1; i * j <= N; j++)
		{
			f[i * j] = add(f[i * j], mul(mul(i, mu[j]), phi_inv[i]));
		}
	}
	
	for (int k = 1; k <= N; k++)
	{
		g[k].resize(N / k + 5);
		for (int n = 1; n * k <= N; n++)
		{
			g[k][n] = add(g[k][n - 1], phi[n * k]);
		}
	}
	
	for (int n = 1; n <= K; n++)
	{
		for (int m = n; m <= K; m++)
		{
			h[n][m].resize(N / m + 5);
			for (int l = 1; m * l <= N; l++)
			{
				h[n][m][l] = add(h[n][m][l - 1], mul(f[l], mul(g[l][n], g[l][m])));
			}
		}
	}
}

int block(int n, int m)
{
	int res = 0;
	for (int i = 1; i <= m / K; i++)
	{
		res = add(res, mul(f[i], mul(g[i][n / i], g[i][m / i])));
	}
	for (int l = m / K + 1, r; l <= n; l = r + 1)
	{
		int k1 = n / l, k2 = m / l;
		r = min(n / k1, m / k2);
		res = add(res, sub(h[k1][k2][r], h[k1][k2][l - 1]));
	}
	return res;
}

int main()
{
	pre();
	int t;
	scanf("%d", &t);
	while (t--)
	{
		int n, m;
		scanf("%d%d", &n, &m);
		if (n > m)
		{
			swap(n, m);
		}
		printf("%d\n", block(n, m));
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值