数学
文章平均质量分 91
mango114514
有量天尊!
展开
-
「题解」Luogu P4152 [WC2014]时空穿梭
P4152 [WC2014]时空穿梭Description多测。给定一个 nnn 维空间,需要在这 nnn 维空间内选取 ccc 个共线的点,要求:这 ccc 个点每维坐标均单调递增,即第 i+1i + 1i+1 个点的第 jjj 维坐标必须严格大于第 iii 个点的第 jjj 维坐标。第 iii 维坐标是整数且在 [1,mi][1, m_i][1,mi] 中。Solution先考虑有多少条直线,一条直线可由 起点 和 终点与起点的差向量 确定。确定差向量为 (x1,x2,⋯ ,xn)原创 2022-02-22 13:49:15 · 480 阅读 · 0 评论 -
数的概念扩展——复数
此博客仅讲述入门部分,没有复数的辐角、三角函数等部分。零、前置知识向量一、复数的引入、定义与分类1. 引入从方程角度看,负实数 −a(a>0)- a (a > 0)−a(a>0) 没有偶次方根,其实就是方程 x2k+a=0(a>0,k∈Z)x^{2k} + a = 0 (a > 0, k\in \mathbf{Z})x2k+a=0(a>0,k∈Z) 无实根,进而归结为方程 x2+1=0x^2 + 1 = 0x2+1=0 无实根。回顾已有的数集扩充过程,可原创 2022-02-13 17:57:31 · 1603 阅读 · 0 评论 -
『题解』LibreOJ #563. Snakes 的 Naïve Graph
#563. 「LibreOJ Round #10」Snakes 的 Naïve GraphDescription有一张二分图 G(m)G(m)G(m),其中有 (m−1)(m - 1)(m−1) 个黑色点与 (m−1)(m - 1)(m−1) 个白色点。黑点 iii 与白点 jjj 有一条无向边,当且仅当下列条件至少有一条成立:i=ji = ji=ji⋅j≡1(modm)i\cdot j \equiv 1\pmod mi⋅j≡1(modm)令 f[G(m)]f[G(m)]f[G原创 2022-02-09 21:07:52 · 966 阅读 · 1 评论 -
『题解』Luogu-P3312 [SDOI2014]数表
P3312 [SDOI2014]数表Description多测,QQQ 组数据。有一张 n×mn\times mn×m 的数表,其第 iii 行第 jjj 列(1≤i≤n,1≤j≤m1\le i\le n, 1\le j\le m1≤i≤n,1≤j≤m)的数值为能同时整除 iii 和 jjj 的所有自然数之和。给定 aaa,计算数表中不大于 aaa 的数之和模 2312^{31}231 的值。1≤n,m≤105,1≤Q≤2×104,∣a∣≤1091\le n, m\le 10^5, 1\le Q\原创 2022-02-03 20:37:04 · 404 阅读 · 0 评论 -
『题解』Luogu-P4318 完全平方数
P4318 完全平方数Description多测,TTT 组数据;每次给出一个整数 kkk,求第 kkk 小不含平方因子的数(注意:111 不算平方因子);1≤k≤109,T≤501\le k\le 10^9, T\le 501≤k≤109,T≤50。Solutionnnn 不含平方因子意味着 μ2(n)=1\mu^2(n) = 1μ2(n)=1,而且 111 也正好满足。我们设S(n)=∑i=1nμ2(i)S(n) = \sum_{i = 1}^n \mu^2(i)S(n)=i=1原创 2022-02-02 17:14:05 · 677 阅读 · 0 评论 -
『题解』Luogu-P3700 [CQOI2017]小Q的表格
P3700 [CQOI2017]小Q的表格Description有一个无穷多行,无穷多列的表格,行列从 111 开始标号,第 aaa 行 bbb 列有一个整数 f(a,b)f(a, b)f(a,b);f(a,b)f(a, b)f(a,b) 应满足:∀a,b∈N∗,f(a,b)=f(b,a)\forall a, b \in \mathbb{N}^*, f(a, b) = f(b, a)∀a,b∈N∗,f(a,b)=f(b,a);∀a,b∈N∗,b⋅f(a,a+b)=(a+b)⋅f(a,b)\fo原创 2022-02-01 21:48:34 · 701 阅读 · 0 评论 -
『题解』Luogu-P6271 [湖北省队互测2014]一个人的数论
P6271 [湖北省队互测2014]一个人的数论Description给出非负整数 ddd 和正整数 nnn 的质因数分解式 n=∏i=1ωpiαin = \prod_{i = 1}^{\omega} p_i^{\alpha_i}n=∏i=1ωpiαi,请求出(fd(n)=∑i=1n[gcd(i,n)=1] id) mod (109+7)\left(f_d(n) = \sum_{i = 1}^n [\gcd(i, n) = 1]\, i^d \right) \bmod (10^9 + 7原创 2022-01-31 21:16:39 · 1094 阅读 · 0 评论 -
O(m²) 实现等幂求和——伯努利数
等幂求和伯努利数是以雅各布 ⋅\cdot⋅ 伯努利的名字命名的,我们记Sm(n)=∑k=0n−1kmS_m(n) = \sum_{k = 0}^{n - 1} k^mSm(n)=k=0∑n−1km伯努利 暴力 算出了前几项,并进行了观察:S0(n)=nS1(n)=12n2−12nS2(n)=13n3−12n2+16nS3(n)=14n4−12n3+14n2+0nS4(n)=15n5−12n4+13n3+0n2−130nS5(n)=16n6−12n5+512n4+0n3−112n2+0nS6(原创 2022-01-29 21:01:17 · 1707 阅读 · 0 评论 -
『题解』Luogu-P1587 [NOI2016] 循环之美
P1587 [NOI2016] 循环之美Description给定十进制数 n,m,kn, m, kn,m,k,求在 kkk 进制下有多少个 值不相等 的 纯循环 小数可以用分数 xy\dfrac{x}{y}yx 表示,其中 1≤x≤n,1≤y≤m,x,y∈N∗1\le x\le n, 1\le y\le m, x, y \in \mathbb{N}^*1≤x≤n,1≤y≤m,x,y∈N∗。1≤n,m≤109,2≤k≤2×1031\le n, m\le 10^9, 2\le k\le 2\time原创 2022-01-28 16:19:26 · 299 阅读 · 0 评论 -
『题解』Luogu-P5572 [CmdOI2019]简单的数论题
4P5572 [CmdOI2019]简单的数论题思路基本同 P4240 毒瘤之神的考验。Description多测,TTT 组数据。给定整数 n,mn, mn,m,请求出[∑i=1n∑j=1mφ(lcm(i,j)gcd(i,j))] mod 23333\left[\sum_{i = 1}^n \sum_{j = 1}^m \varphi\left(\dfrac{\operatorname{lcm}(i, j)}{\gcd(i, j)} \right) \right] \bmod 23原创 2022-01-26 21:03:11 · 325 阅读 · 0 评论 -
『题解』Luogu-P5176 公约数
P5176 公约数Description多测,TTT 组数据。给定 n,m,pn, m, pn,m,p,请求出[∑i=1n∑j=1m∑k=1pgcd(ij,ik,jk)⋅gcd(i,j,k)⋅(gcd(i,j)gcd(i,k)⋅gcd(j,k)+gcd(i,k)gcd(i,j)⋅gcd(j,k)+gcd(j,k)gcd(i,j)⋅gcd(i,k))] mod (109+7)\left[ \sum_{i = 1}^n \sum_{j = 1}^m \sum_{k = 1原创 2022-01-25 12:12:04 · 228 阅读 · 0 评论 -
【题解】Luogu-P4240 毒瘤之神的考验
P4240 毒瘤之神的考验Description多测,ttt 组数据。每次给定两个整数 n,mn, mn,m,请求出[∑i=1n∑j=1mφ(ij)] mod 998244353\left[ \sum_{i = 1}^n \sum_{j = 1}^m \varphi(ij) \right] \bmod 998244353[i=1∑nj=1∑mφ(ij)]mod9982443531≤t≤1041\le t\le 10^41≤t≤104,1≤n,m≤1051\le n, m\le原创 2022-01-24 21:32:58 · 634 阅读 · 0 评论 -
【题解】Luogu-P6156 简单题
P6156 简单题 和 P6222 「P6156 简单题」加强版加强版卡空间。Description给定整数 n,kn, kn,k,请求出[∑i=1n∑j=1n(i+j)kf(gcd(i,j))gcd(i,j)] mod 998244353\left[\sum_{i = 1}^n \sum_{j = 1}^n (i + j)^k f(\gcd(i, j)) \gcd(i, j) \right] \bmod 998244353[i=1∑nj=1∑n(i+j)kf(gcd(i,j))gc原创 2022-01-24 12:02:47 · 124 阅读 · 0 评论 -
【题解】GCDEX 系列
Version 1UVA11417 GCDDescription多测,ttt 组数据。给定整数 nnn,求∑i=1n∑j=i+1ngcd(i,j)\sum_{i = 1}^n \sum_{j = i + 1}^n \gcd(i, j)i=1∑nj=i+1∑ngcd(i,j)1≤t≤100,1≤n≤5011\le t\le 100, 1\le n\le 5011≤t≤100,1≤n≤501。SolutionO(n2)\Omicron(n^2)O(n2) 暴力。Cod原创 2022-01-23 13:14:58 · 455 阅读 · 0 评论 -
【题解】Luogu-P5221 Product
P5221 ProductDescription给定整数 nnn,请求出[∏i=1n∏j=1nlcm(i,j)gcd(i,j)] mod 104857601\left[\prod_{i = 1}^n \prod_{j = 1}^n \dfrac{\operatorname{lcm}(i, j)}{\gcd(i, j)} \right] \bmod 104857601[i=1∏nj=1∏ngcd(i,j)lcm(i,j)]mod104857601对于 100%100\%100%原创 2022-01-20 19:45:15 · 173 阅读 · 0 评论 -
【题解】Luogu-P7486 「Stoi2031」彩虹
P7486 「Stoi2031」彩虹请确保宁已经熟练掌握:莫比乌斯反演形如 ∑d∣nf(d)\sum_{d\mid n} f(d)∑d∣nf(d),其中 fff 为积性函数的 Θ(nlnn)\Theta(n\ln n)Θ(nlnn) 的筛法。Description多测,数据组数为 ttt。给定一个正整数 nnn,然后 ttt 组询问,每组给出两个满足 1≤l≤r≤n1\le l\le r\le n1≤l≤r≤n 的正整数 l,rl, rl,r,请求出[∏i=lr∏j=lrlcm原创 2022-01-20 11:37:06 · 290 阅读 · 0 评论 -
【题解】Luogu-P3911 最小公倍数之和
P3911 最小公倍数之和Description给定整数 nnn 和 nnn 个整数 a1,a2,…,ana_1, a_2, \dots, a_na1,a2,…,an,求∑i=1n∑j=1nlcm(ai,aj)\sum_{i = 1}^n \sum_{j = 1}^n \operatorname{lcm}(a_i, a_j)i=1∑nj=1∑nlcm(ai,aj)对于 100%100\%100% 的数据,1≤n,ai≤5×1041 \le n, a_i \le 5\tim原创 2022-01-19 18:05:24 · 201 阅读 · 0 评论 -
【题解】Luogu-P4449 于神之怒加强版
P4449 于神之怒加强版Description多测,数据组数为 TTT。给定 常数 kkk 和整数 n,mn, mn,m,计算[∑i=1n∑j=1mgcd(i,j)k] mod (109+7)\left[\sum_{i = 1}^n \sum_{j = 1}^m \gcd(i, j)^k \right] \bmod (10^9 + 7)[i=1∑nj=1∑mgcd(i,j)k]mod(109+7)对于全部的测试点,保证 1≤T≤2×103,1≤n,m,k≤5×1061\l原创 2022-01-18 21:56:40 · 211 阅读 · 0 评论 -
【题解】BZOJ-4176 Lucas的数论
Lucas的数论Description给定整数 nnn,求[∑i=1n∑j=1nd(ij)] mod (109+7)\left[\sum_{i = 1}^n \sum_{j = 1}^n d(ij)\right] \bmod (10^9 + 7)[i=1∑nj=1∑nd(ij)]mod(109+7)对于 100%100\%100% 的数据 n≤109n\le 10^9n≤109。Solution∑i=1n∑j=1nd(ij)=∑i=1n∑j=1n∑x∣i∑y∣j[gcd(x原创 2022-01-18 20:18:40 · 530 阅读 · 0 评论 -
【题解】Luogu-P1447 [NOI2010] 能量采集
Description给定整数 n,mn, mn,m,求∑i=1n∑j=1m2gcd(i,j)−1\sum_{i = 1}^n \sum_{j = 1}^m 2 \gcd(i, j) - 1i=1∑nj=1∑m2gcd(i,j)−1对于 100%100\%100% 的数据:1≤n,m≤1051 \le n, m \le 10^51≤n,m≤105。Solution不妨设 n≤mn\le mn≤m。∑i=1n∑j=1m2gcd(i,j)−1=−nm+2∑i=1n∑j=1mgcd原创 2022-01-18 14:51:26 · 406 阅读 · 0 评论 -
【题解】Luogu-P3768 简单的数学题
P3768 简单的数学题Description给定整数 n,pn,pn,p,请求出(∑i=1n∑j=1nijgcd(i,j)) mod p\left(\sum_{i = 1}^{n} \sum_{j = 1}^n ij \gcd(i, j) \right) \bmod p(i=1∑nj=1∑nijgcd(i,j))modp对于 100%100\%100% 的数据,n≤1010,5×108≤p≤1.1×109n\le 10^{10}, 5 \times 10^8 \le p \le 1原创 2022-01-18 11:25:31 · 531 阅读 · 0 评论 -
【数学】加性函数与积性函数
一、前置知识艾佛森括号[P]={1if P is true0otherwise[P]=\begin{cases}1 & \text{if}\ P\ \text{is true} \\0 & \text{otherwise}\end{cases}[P]={10if P is trueotherwise其中 PPP 是一个可真可假的命题。如 [114514≤1919810]=1,[−1∈N]=0[114514\l原创 2022-01-11 20:56:23 · 928 阅读 · 0 评论 -
【数学】狄利克雷卷积
一、前置知识1. 艾佛森括号$$[P]\begin{cases}1 & \text{if}\ P\ \text{is true} \0 & \text{otherwise}\end{cases}$$其中 PPP 是一个可真可假的命题。2. 积性函数因为狄利克雷卷积很多时候用来卷积性函数,所以要明白积性函数的定义。积性函数:∀n,m,n⊥m\forall n,m,n\perp m∀n,m,n⊥m, 若 f(n)f(m)=f(nm)f(n)f(m)=f(nm)f(n)f(原创 2021-12-30 21:46:48 · 1239 阅读 · 0 评论 -
【数学】数论分块(整除分块)
Description数论分块,通常用于快速求解形如 ∑i=1nf(i)⋅g(⌊ni⌋)\sum\limits_{i=1}^n f(i) \cdot g\left(\left\lfloor\frac{n}{i}\right\rfloor\right)i=1∑nf(i)⋅g(⌊in⌋) 的和式,所以通常被称为 整除分块,当能用 O(1)O(1)O(1) 计算出 ∑i=1nf(i)\sum\limits_{i=1}^n f(i)i=1∑nf(i) 时,数论分块便能用 O(n)O(\sqrt n)O(n原创 2021-12-25 10:19:30 · 715 阅读 · 0 评论 -
【题解】Luogu-P5303 [GXOI/GZOI2019]逼死强迫症
P5303 [GXOI/GZOI2019]逼死强迫症Preface矩阵题的登峰造极之作。Description有 TTT 组数据。对于每组数据,给定正整数 NNN,请求出用 (N−1)(N-1)(N−1) 个 2×12\times 12×1 的方格和 222 个 1×11\times 11×1 的方格铺满 2×N2\times N2×N 的大方格的方案数,其中 222 个 1×11\times 11×1 的方格不能有相邻的边。答案对 109+710^9+7109+7 取模。对于 100%10原创 2021-12-23 13:38:58 · 337 阅读 · 0 评论 -
【题解】Luogu-P3301 [SDOI2013]方程
P3301 [SDOI2013]方程Description给定方程及不等式组{x1+x2+⋯+xn=mx1≤a1x2≤a2⋯xn1≤an1xn1+1≥an1+1xn1+2≥an1+2⋯xn1+n2≥an1+n2\begin{cases}x_1+x_2+\cdots+x_n=m\\\\x_1\le a_1\\x_2\le a_2\\\cdots\\x_{n1}\le a_{n1}\\\\x_{n1+1}\ge a_{n1+1}\\x_{n1+2}\ge a_{n1+2}\\\cdo原创 2021-12-17 20:25:59 · 325 阅读 · 1 评论 -
【数学】扩展卢卡斯定理
Description求(nm) mod p\dbinom{n}{m}\bmod p(mn)modp其中 ppp 较小且 不保证 ppp 是质数。Method前置芝士:中国剩余定理因为 ppp 不为质数,所以得使用扩展卢卡斯定理(Extended Lucas,exLucas\rm Extended\ Lucas,exLucasExtended Lucas,exLucas)。Part 1:中国剩余定理首先按照 唯一分解定理 将 ppp 分解质因数:p=∏i=1原创 2021-12-14 14:12:31 · 663 阅读 · 0 评论 -
【题解】Luogu-P5345 【XR-1】快乐肥宅
P5345 【XR-1】快乐肥宅Perface\text{Perface}Perface好题!!!当然也很毒瘤。突然感到屠龙勇士在这题面前就是逊内!!!Description\text{Description}Description给定高次同余方程组{k1x≡r1(modg1)k2x≡r2(modg2)⋯knx≡rn(modgn)\begin{cases}k_1^x\equiv r_1\pmod {g_1}\\k_2^x\equiv r_2\pmod {g_2}\\\cdots\\原创 2021-12-11 10:36:18 · 565 阅读 · 0 评论 -
【题解】Luogu-P4774 [NOI2018] 屠龙勇士
与恶龙缠斗过久,自身亦成为恶龙。凝视深渊过久,深渊将回以凝视。 ——尼采《善恶的彼岸》P4774 [NOI2018] 屠龙勇士Description\text{Description}Description玩家需要按照编号 1→n1 \to n1→n 顺序杀掉 nnn 条巨龙,每条巨龙拥有一个初始的生命值 bib_ibi。同时每条巨龙拥有恢复能力,会使它的生命值每次增加 aia_iai,直至生命值非负。游戏开始时玩家拥有 mmm 把剑,每.原创 2021-12-03 19:10:36 · 246 阅读 · 0 评论 -
【数学】扩展中国剩余定理
问题描述给定 nnn 个正整数 aia_iai 和 nnn 个非负整数 bib_ibi,求解关于 xxx 的线性同余方程组:{x≡b1(moda1)x≡b2(moda2)⋯x≡bn(modan)\begin{cases}x\equiv b_1\pmod {a_1}\\x\equiv b_2\pmod {a_2}\\\cdots\\x\equiv b_n\pmod {a_n}\\\end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧x≡b1(moda1)x≡b2(moda2)⋯x≡bn(m原创 2021-12-03 13:58:44 · 632 阅读 · 0 评论 -
【题解】Luogu-P2480 [SDOI2010]古代猪文
P2480 [SDOI2010]古代猪文Description\text{Description}Description给定正整数 n,gn,gn,g,求 g∑k∣nCnk mod 999911659g^{\sum_{k\mid n}C_{n}^{k}}\bmod 999911659g∑k∣nCnkmod999911659。对于 100%100\%100% 的数据,1≤n,g≤1091\le n,g \le 10^91≤n,g≤109。Solution\text{Solution}Solut原创 2021-12-02 18:30:04 · 123 阅读 · 0 评论 -
【数学】欧拉定理
定理内容若 gcd(a,m)=1\gcd(a,m)=1gcd(a,m)=1,则 aφ(m)≡1(modp)a^{\varphi(m)}\equiv 1\pmod paφ(m)≡1(modp)。定理证明构造一个模 mmm 意义下的简化剩余系:{r1,r2,…,rφ(m)}\{r_1,r_2,\dots,r_{\varphi(m)}\}{r1,r2,…,rφ(m)}。因为 gcd(a,m)=1\gcd(a,m)=1gcd(a,m)=1,所以 {ar1,ar2,…,arφ(m)}\{ar_1,a原创 2021-12-02 13:44:32 · 277 阅读 · 0 评论 -
【数学】中国剩余定理
给定 nnn 个正整数 aia_iai 和 nnn 个非负整数 bib_ibi,求解关于 xxx 的线性同余方程组:{x≡b1(moda1)x≡b2(moda2)⋯x≡b3(moda3)\begin{cases}x\equiv b_1\pmod {a_1}\\x\equiv b_2\pmod {a_2}\\\cdots\\x\equiv b_3\pmod {a_3}\\\end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧x≡b1(moda1)x≡b2(moda2)⋯x≡b3(moda3原创 2021-11-23 18:48:29 · 399 阅读 · 0 评论 -
【数学】卢卡斯定理
给定 n,m,pn,m,pn,m,p,其中 n,mn,mn,m 较大,ppp 为质数且不是很大,求(nm) mod p\dbinom{n}{m}\bmod p(mn)modpLucas\rm LucasLucas 定理(nm)≡(⌊np⌋⌊mp⌋)⋅(n mod pm mod p)(modp)(p为质数)\dbinom{n}{m}\equiv\dbinom{\left\lfloor\frac{n}{p}\right\rfloor}{\left\lfloor\frac{m}{p}\right\r原创 2021-11-19 12:57:47 · 603 阅读 · 0 评论 -
【数学】二项式定理
二项式定理(a+b)n=∑k=0n(nk)akbn−k(a+b)^n=\sum\limits_{k=0}^{n}\dbinom{n}{k}a^k b^{n-k}(a+b)n=k=0∑n(kn)akbn−k证明:(a+b)n=(a+b)(a+b)⋯(a+b)⏟n个(a+b)(a+b)^n=\begin{matrix}\underbrace{(a+b)(a+b)\cdots(a+b)}\\n个(a+b)\end{matrix}(a+b)n=(a+b)(a+b)⋯(a+b)n个(a+b)如果原创 2021-11-18 14:06:59 · 212 阅读 · 0 评论 -
【数学】高斯-约旦消元法
给定 nnn 元一次方程组{a1,1x1+a1,2x2+⋯+a1,nxn=b1a2,1x1+a2,2x2+⋯+a2,nxn=b2⋯an,1x1+an,2x2+⋯+an,nxn=bn\begin{cases}a_{1,1}x_1+a_{1,2}x_2+\cdots+a_{1,n}x_n=b_1\\a_{2,1}x_1+a_{2,2}x_2+\cdots+a_{2,n}x_n=b_2\\\cdots\\a_{n,1}x_1+a_{n,2}x_2+\cdots+a_{n,n}x_n=b_n\\\en原创 2021-11-14 09:57:55 · 3204 阅读 · 2 评论 -
【数学】扩展 BSGS
前置芝士:BSGS当 a,b,pa,b,pa,b,p 均为整数时,请求出方程ax≡b(modp)a^x\equiv b\pmod pax≡b(modp)的最小非负整数解.对于普通的 BSGS\rm BSGSBSGS,必须在 a,pa,pa,p 互质时才能求.当 a,pa,pa,p 不互质时,需要用到扩展 BSGS\rm BSGSBSGS,即 exBSGS\rm exBSGSexBSGS.我们考虑:ax≡b(modp)设gcd(a,p)=g1axg1≡bg1(modpg1)a^x\equ原创 2021-11-07 09:39:40 · 327 阅读 · 0 评论 -
【数学】Baby Step,Giant Step
给定整数 a,b,pa,b,pa,b,p 且 a,pa,pa,p 互质,请求出高次同余方程ax≡b(modp)a^x\equiv b\pmod pax≡b(modp)的非负整数解.首先,a0≡1(modp)a^0\equiv 1\pmod pa0≡1(modp)又由欧拉定理知aφ(p)≡1(modp)a^{\varphi(p)}\equiv 1\pmod paφ(p)≡1(modp)所以出现了周期.所以 xxx 在区间 [0,φ(p))[0,\varphi(p))[0,φ(p)) 中一定有,原创 2021-11-05 19:08:29 · 156 阅读 · 0 评论 -
【题解】Luogu-P2155
P2155 [SDOI2008] 沙拉公主的困惑Description\text{Description}Description给定 t,rt,rt,r,有 ttt 次询问,每次给定 n,mn,mn,m,请求出 [1,n!][1,n!][1,n!] 中与 m!m!m! 互质的数的数量,答案对 rrr 取模.对于 100%100\%100% 的数据,1≤m≤n≤107,1≤t≤104,2≤r≤109+101\le m\le n\le 10^7,1\le t\le 10^4,2\le r\le 1原创 2021-11-05 19:07:59 · 156 阅读 · 0 评论 -
【数学】逆元
一、逆元的意义在一道题中,如果既有除法又有取余,那么是不能直接除的:ab mod p≠a mod pb mod p\dfrac{a}{b}\bmod p\ne \dfrac{a\bmod p}{b\bmod p}bamodp=bmodpamodp这时候逆元就登场了.众所周知,a⋅a−1=1a\cdot a^{-1}=1a⋅a−1=1,类似地定义 aaa 在模 ppp 意义下的逆元为使得a⋅x≡1(modp)a\cdot x\equiv 1\pmod pa⋅x≡1(modp)成立的 xxx原创 2021-10-30 11:16:17 · 637 阅读 · 0 评论