自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 分类结果查看

都在五六十张。

2024-07-11 15:19:16 317

原创 小样本分类生成全局混淆矩阵

因此这不像传统的图像分类,生成的混淆矩阵直接就是全部类别的分类,所以我们要想办法将小样本分类中的每个episode聚合起来生成一个含有全部类别的混淆矩阵。如果想将其生成为热力图的形式,可将生成的混淆矩阵进行保存,在jupyter notebook中进行运行。此时即可生成全局混淆矩阵,查看可使用print(global_conf_matrix)。小样本分类因其使用元学习的训练方法,每个episode只选取其中几个类别进行训练和测试。在main函数中调用上述代码存在的函数时需传参。

2024-07-07 12:35:20 339

原创 究竟什么是小样本学习?

本文介绍了究竟什么是小样本学习,以图像分类为例,写的有些乱,可以去其中的视频查看究竟是怎么回事

2024-06-18 21:10:29 1854 1

原创 Revisiting Prototypical Network for Cross Domain Few-Shot Learning

提议的ldp网络框架。LDP-net由两分支网络组成。全局分支提取全局特征,局部分支以原始查询图像的随机裁剪作为输入提取局部特征。然后,在这两个分支之间进行知识蒸馏,以增强局部-全局语义一致性。此外,在知识蒸馏过程中,局部分支被更新为全局分支的指数移动平均线(EMA),从而可以更好地提取跨章节的知识。局部和原型匹配求预测值时可使用featwalk进行特征融合。比较与基线方法的性能差异以及对每个组件进行消融实验。backbone使用resnet12。比较与其他现有方法的性能差异。分类可使用余弦相似度。

2024-05-30 16:10:37 527

原创 FeatWalk: Enhancing Few-Shot Classification through Local View Leveraging

5way-1shot的实验结果。

2024-05-16 16:27:08 161

原创 FewFaceNet: A Lightweight Few-Shot Learning-based Incremental Face Authentication for Edge Cameras

骨干模型的体系结构:模型的核心特征是其树状并行结构,包括三个分支。每个分支都具有不同的架构,分别受到不同激发的影响。每个分支都负责不同层次的特征提取。第一个分支采用了简单的卷积层和 ReLU 激活单元,第二个分支受到了 ResNet 架构的启发,通过轻量级残差块提取特征,而第三个分支则采用了 DenseNet 架构,通过密集连接实现特征提取。本文介绍了一种名为FewFaceNet的新型人脸认证技术,旨在解决现有方法在资源受限环境下的局限性。这种共享参数的设计有助于模型在有限资源条件下实现更好的性能。

2024-04-26 14:39:11 209 1

原创 Tree Structure-Aware Few-Shot Image Classifciation via Hierarchical Aggregation

Tree Structure-Aware Few-Shot Image Classifciation via Hierarchical Aggregation阅读笔记

2024-04-26 11:42:59 1575 1

原创 few-shot调研

对数变换辅助高斯采样的少样本学习,2023发布在iccv领域:图像分类数据集:1、miniImageNet,它有100个不同的类,每个类600张图像,每个大小为84 × 84 × 32、CUB,共有11,788幅图像,每幅大小为84 × 84 × 3,包含200种不同种类的鸟类。总结:该论文提出了一种新的高斯转换方法,可以将实验数据转换为更接近高斯分布的数据,并将其应用于小样本图像分类中。实验结果表明,该方法在性能上取得了显著提升,同时减少了所需的数据量。

2024-04-19 13:42:17 1184 1

原创 netron 神经网络可视化

netron并不支持pytorch通过torch.save方法导出的模型文件,因此在pytorch保存模型的时候,需要将其导出为onnx格式的模型文件,可以利用torch.onnx模块实现这一目标。整体的流程分为两步,第一步,pytorch导出onnx格式的模型文件。第二步,netron载入模型文件,进行可视化。接下来按照这两步进行实践。

2023-10-25 16:22:57 240 1

原创 动手学深度学习—现代卷积神经网络

原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均汇聚层,将每个通道的高和宽变成1。ResNet 的前两层跟之前介绍的 GoogLeNet 中的一样: 在输出通道数为 64、步幅为 2 的 7×7 卷积层后,接步幅为 2 的 3×3 的最大汇聚层。AlexNet和LeNet的架构非常相似,注意,本书在这里提供的是一个稍微精简版本的AlexNet,去除了当年需要两个小型GPU同时运算的设计特点。

2023-10-19 23:59:24 158 1

原创 动手学深度学习——卷积神经网络

平移不变性(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系,这就是“局部性”原则。最终,可以聚合这些局部特征,以在整个图像级别进行预测。图像的平移不变性使我们以相同的方式处理局部图像,而不在乎它的位置。

2023-10-19 21:27:16 153

原创 动手学深度学习——深度学习计算

每个块需要具有的功能:将输入数据作为其前向传播函数的参数。通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。存储和访问前向传播计算所需的参数。根据需要初始化模型参数。下列代码编写了一个块,包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层# 用模型参数声明层。这里,我们声明两个全连接的层# 调用MLP的父类Module的构造函数来执行必要的初始化。

2023-10-13 01:48:15 94

原创 动手学深度学习——多层感知机

多层感知机在输出层和输入层之间增加一个或多个全连接隐藏层,并通过激活函数转换隐藏层的输出。

2023-10-13 01:47:38 154

原创 动手学深度学习——线性神经网络

我们必须定义模型,将模型的输入和参数同模型的输出关联起来。线性回归模型:y=wx+b#定义模型"""线性回归模型"""因为需要计算损失函数的梯度,所以我们应该先定义损失函数。#定义损失函数"""均方损失"""使用小批量随机梯度下降#定义优化算法"""小批量随机梯度下降"""with torch.no_grad(): #在该模块下,所有计算得出的tensor的requires_grad都自动设置为False。# param.grad是损失函数关于param的梯度。

2023-10-12 21:57:00 210

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除