记忆化DP—滑雪

本文介绍了一种算法,用于寻找给定二维高度矩阵中滑雪场最长的滑行轨迹。通过动态规划的方法,实现了对每个区域可达最远距离的有效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例题:滑雪

给定一个R行C列的矩阵,表示一个矩形网格滑雪场。

矩阵中第 i 行第 j 列的点表示滑雪场的第 i 行第 j 列区域的高度。

一个人从滑雪场中的某个区域内出发,每次可以向上下左右任意一个方向滑动一个单位距离。

当然,一个人能够滑动到某相邻区域的前提是该区域的高度低于自己目前所在区域的高度。

下面给出一个矩阵作为例子:

 1  2  3  4 5

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

在给定矩阵中,一条可行的滑行轨迹为24-17-2-1。

在给定矩阵中,最长的滑行轨迹为25-24-23-…-3-2-1,沿途共经过25个区域。

现在给定你一个二维矩阵表示滑雪场各区域的高度,请你找出在该滑雪场中能够完成的最长滑雪轨迹,并输出其长度(可经过最大区域数)。

输入格式

第一行包含两个整数R和C。

接下来R行,每行包含C个整数,表示完整的二维矩阵。

输出格式

输出一个整数,表示可完成的最长滑雪长度。

数据范围

1≤R,C≤3001≤R,C≤300,
0≤矩阵中整数≤100000≤矩阵中整数≤10000

输入样例:

5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

输出样例:

25
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N = 310;
int n, m;
int a[N][N];
int f[N][N];
int dx[4] = {-1, 1, 0, 0};
int dy[4] = {0, 0, -1, 1}; 

int dp(int x, int y)
{
	if(f[x][y] != -1) return f[x][y];//表示这个点被搜过 
	
	f[x][y] = 1;
	
	for(int i = 0; i < 4; i++)
	{
		int fx = x + dx[i], fy = y + dy[i];
		if(fx >= 0 && fx < n && fy >= 0 && fy < m && a[fx][fy] < a[x][y])
		{
			f[x][y] = max(f[x][y], dp(fx, fy) + 1);
		}
	}
	return f[x][y];
}
int main()
{
	cin >> n >> m;
	for(int i = 0; i < n; i++)
	{
		for(int j = 0; j < m; j++)
		{
			cin >> a[i][j];
		}
    }
    
    memset(f, -1, sizeof(f)); 
    
    int ans = 0;
    for(int i = 0; i < n; i++)
    {
    	for(int j = 0; j < m; j++)
    	{
    		ans = max(ans, dp(i, j));
		}
	}
	
	cout << ans << endl;
	return 0;
}

 

### 滑雪场问题的记忆化搜索算法实现 滑雪场问题可以通过记忆化搜索来优化递归搜索的效率。以下是基于C语言实现滑雪场问题的记忆化搜索算法的详细说明和代码示例。 #### 算法思路 1. 使用二维数组 `dp[i][j]` 来记录从点 `(i, j)` 出发能够达到的最大滑行路径长度。 2. 利用深度优先搜索(DFS)遍历整个滑雪场地,尝试从当前点向四个方向移动。 3. 如果下一个点的高度低于当前点,则继续递归搜索,并更新最大路径长度。 4. 通过记忆化技术避免重复计算已经访问过的点,从而提高算法效率。 #### 实现代码 以下是一个完整的C语言实现: ```c #include <stdio.h> #include <string.h> #define MAX 105 int max(int x, int y) { return x > y ? x : y; } int r, c, dp[MAX][MAX], mp[MAX][MAX]; int dir[4][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; // 四个方向:右、左、下、上 // DFS函数:从点(x, y)出发的最大滑行路径长度 int dfs(int x, int y) { if (dp[x][y]) return dp[x][y]; // 如果已经计算过该点的最大路径长度,直接返回 dp[x][y] = 1; // 初始化为1,表示至少包含自身这个点 for (int i = 0; i < 4; i++) { // 遍历四个方向 int nx = x + dir[i][0]; int ny = y + dir[i][1]; if (nx >= 0 && nx < r && ny >= 0 && ny < c && mp[nx][ny] < mp[x][y]) { dp[x][y] = max(dp[x][y], dfs(nx, ny) + 1); // 更新最大路径长度 } } return dp[x][y]; } int main() { scanf("%d%d", &r, &c); // 输入滑雪场地的行数和列数 for (int i = 0; i < r; i++) { for (int j = 0; j < c; j++) { scanf("%d", &mp[i][j]); // 输入每个点的高度 } } memset(dp, 0, sizeof(dp)); // 初始化dp数组为0 int res = 0; for (int i = 0; i < r; i++) { for (int j = 0; j < c; j++) { res = max(res, dfs(i, j)); // 遍历每个点,找到全局最大路径长度 } } printf("%d\n", res); // 输出结果 return 0; } ``` #### 代码解析 1. **输入部分**: - 通过 `scanf` 读取滑雪场地的大小 `r` 和 `c`,以及每个点的高度值。 2. **DFS函数**: - 定义了 `dfs` 函数用于递归搜索从点 `(x, y)` 出发的最大滑行路径长度。 - 如果当前点的最大路径长度已经计算过(即 `dp[x][y] != 0`),则直接返回以减少重复计算[^5]。 - 尝试向四个方向移动,如果满足高度条件(下一个点的高度小于当前点),则递归调用 `dfs` 并更新最大路径长度。 3. **主循环**: - 遍历滑雪场地的每一个点,调用 `dfs` 计算从该点出发的最大滑行路径长度,并更新全局最大值 `res`。 #### 时间复杂度与空间复杂度 - **时间复杂度**:由于使用了记忆化技术,每个点最多只会被访问一次,因此时间复杂度为 O(r * c)。 - **空间复杂度**:需要额外的空间存储 `dp` 数组和递归栈,空间复杂度为 O(r * c)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值