微软是最差的,GOOGLE是最好的,中国的教育是很难救的 -读《世界因你不同》

什么人才敢用“世界因你而不同”这样的标题啊?这里面的潜台词是,“世界已经因为我而不同了,然后我也能让这世界因你而不同。”开复同学说他从小都一直是那么自信,我终于相信了。  

一个人从小的生活环境给人的一生的影响是巨大的。在座的恐怕难有很多人能有开复同学那样的背景。父亲在抗战时演讲(母亲那时看上他),后来又到stanford做访问学者,文化人啊。11岁到美国接受西方教育…龙生龙,凤生凤,生个老鼠打地洞。

 很多人没成功,因为他们不知道自己能成功。他们看到的都是主流媒体的垃圾信息,看不到真正关心他们自身发展的信息。大学里所谓的“职业发展规划”形同虚设。我本科时曾经陪学院里有一个领导到省里开“职业发展规划”的会,他在会上主要是报告院里的职业规划活动是如何的搞得生龙活虎的,理论基础是什么,BALABALA。可是,我在院里可没见到有什么实际的活动。老师人还是很好的,但这也阻止不了这些都成为雷声大雨点小的政绩工程。我的职业规划一片雪白,那皎洁的…

 在这样的环境下,我觉得开复同学在教育上做的事是对我们教育的发展有促进作用的。他让我们看到了一条他成功的轨迹。虽然是一个蛮不具参考价值的轨迹,但是起码让我坚定了去教育发达的地方接受教育的想法,因为那里的世界可以让你不同。

 在这个犬儒主义横行的社会,任何上进的想法和做法都可能被人投以另类的目光。在中国,传统文化里,就是要追求“万人之上”,“唯我独尊”。所以,人们都会被可怕的文化惯性地推动,而认为:这人以后就是想要踩我头上呀。

 人,一个正常人,都想获得别人的承认,这欲望,就略微比食欲、性欲低一个优先级。那些承认不必来自身份比你低的人,那些快乐不必要建立在别人的痛苦上。当人们都有自信的时候,他们也许就会由衷地赞美别人。

 BY THE WAY:

 开复同志在书里对他在微软最后一段日子描写,足以让微软的名声一落千丈。如果是真的( I take a leave to doubt ),那么微软是真慌了神了。一个有自信的企业,一个有自信的人,不会使出卑鄙的手段的。因为他们在其他地方有资本继续让自己自信。 

GOOGLE的食堂,他们的工作机制,让GOOGLE成为IT人的天堂。有哪个人不想去GOOGLE,那里有全国全球聪明的人,能和他们在一起的,也就自然是聪明人。开复同志在书里给GOOGLE做了个大广告。

### 关于最佳适应算法与最坏适应算法的比较 #### 最佳适应算法 (Best Fit Algorithm) 最佳适应算法的核心在于为当前请求分配 **最小但足以容纳需求的空间** 的空闲分区[^1]。这种方法的优点是可以最大限度减少外部碎片,因为每次都会优先选择较小的分区来满足需求,从而保留较大的连续内存区域供后续的大规模请求使用。 然而,这种策略也存在显著缺点:频繁地扫描整个空闲分区列表以寻找最适合的小型分区会增加时间开销,尤其是在系统中有大量空闲分区的情况下[^2]。此外,长期采用此方法可能导致许多极小的不可用片段积累,最终影响整体性能。 #### 最坏适应算法 (Worst Fit Algorithm) 相比之下,最坏适应算法则采取完全不同的策略——始终选取 **最大可用空闲分区** 来进行划分并分配给所需资源[^1]。理论上讲,这样做的好处是能够保持剩余部分仍然较大,进而降低因过细切割而产生的碎片风险。而且一旦建立好按照尺寸降序排列好的空闲区链接,则实际操作过程中仅需判断首位项是否符合条件即可完成快速决策。 不过值得注意的是,“最坏”的命名并不代表其效能必然低下;事实上,在某些特定场景下(比如持续有较多中小型任务到来),这种方式反而可能表现得较为理想。但是当面临突发性的大规模申请时,如果之前已将大部分巨型区块消耗殆尽,则可能会陷入无解境地。 #### 正确性分析 上述两种算法各有千秋,并不存在绝对意义上的优劣之分,而是取决于具体应用场景的需求特性: - 对于那些倾向于保护大块连续地址空间以便处理未来可能出现的重要事务的情况来说,**最佳适应法**或许更加合适; - 而对于希望简化管理流程同时又能有效控制小型残片累积程度的任务序列而言,**最坏适应法则提供了另一种可行思路**。 因此可以认为两者描述均具有合理性,只是适用范围有所差异而已[^1]。 ```python def best_fit(partitions, process_size): """模拟最佳适配算法""" index = -1 min_diff = float('inf') for i in range(len(partitions)): diff = partitions[i] - process_size if diff >=0 and diff < min_diff: min_diff = diff index = i if index != -1: allocated_partition = partitions.pop(index) leftover = allocated_partition - process_size if leftover > 0: partitions.append(leftover) return index def worst_fit(partitions, process_size): """模拟最差适配算法""" max_index = -1 largest_partition = -float('inf') for i in range(len(partitions)): current_partition = partitions[i] if current_partition > process_size and current_partition > largest_partition: largest_partition = current_partition max_index = i if max_index != -1: removed_partition = partitions[max_index] remaining_space = removed_partition - process_size partitions.remove(removed_partition) if remaining_space > 0: partitions.append(remaining_space) return max_index ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值