~对称矩阵的压缩存储~

       众所周知,对称矩阵的定义如下:设一个N*N的方阵A,A中任意元素Aij,当且仅当Aijj==Aji(0<=i<N,0<=j<N)时,该矩阵是对称矩阵。以对称矩阵的对角线为分割,分为上三角形和下三角形。

       压缩存储对称矩阵时只需存储上三角形或下三角形的数据即可,故最多可存储n(n+1)/2个数据。

以下代码是以对称矩阵的下三角形存储:

template <class T>
class SymmetricMatrix
{
public:
	SymmetricMatrix(T* matrix, size_t N)
		:_N(N)
	{
		_matrix = new T[N*(N+1)/2];
		size_t index = 0;

		for(size_t i=0; i<N; ++i)
		{
			for(size_t j=0; j<N; ++j)
			{
				if(i >= j)
				{
					_matrix[index++] = matrix[i*N+j];
				}
				else
				{
					break;
				}
			}
			//for(size_t j=0; j<=i; ++j)
			//{
			//	_matrix[index++] = matrix[i*N+j];
			//}
		}
	}

	~SymmetricMatrix()
	{
		delete[] _matrix;

		_matrix = NULL;
		_N = 0;
	}

	T& Access(size_t i, size_t j)  //判断位置
	{
		if(i < j)
		{
			swap(i, j);
		}

		return _matrix[i*(i+1)/2+j];
	}

	const T& Access(size_t i, size_t j) const  //判断位置
	{
		if(i < j)
		{
			swap(i, j);
		}

		return _matrix[i*(i+1)/2+j];
	}

	void Display()  //打印矩阵
	{
		for(size_t i=0; i<_N; ++i)
		{
			for(size_t j=0; j<_N; ++j)
			{
				cout<<Access(i, j)<<" ";
			}

			cout<<endl;
		}

		cout<<endl;
	}
protected:
	T* _matrix;
	size_t _N;
};

测试用例如下:

void TestSymmetricMatrix()
{
	int matric[5][5] = 
	{
		{0,1,2,3,4},
		{1,0,1,2,3},
		{2,1,0,1,2},
		{3,2,1,0,1},
		{4,3,2,1,0}
	};

	SymmetricMatrix<int> sm((int *)matric, 5); 
	sm.Display();
}



 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值