fasttext小试牛刀

3 篇文章 0 订阅
2 篇文章 0 订阅

解读源码:原始输入其实是one-hot,wi其实就是lookuptable,所有的wordvector加和求平均直接得到隐藏层,隐藏层经过wo矩阵得到输出,再进行softmax。

需求一:已经有其他样本训练好的词向量,想直接用,迁移学习

如果有预训练好的wordvec,利用参数 -pretrainedVectors 指定文件就行,这个是用与训练的文件初始化参数,迭代过程中词向量仍会变。如果想要迭代过程中输入到hidden的过程不变,即词向量不变,注释掉model.cc里的wi更新即可,亲测输出的.vec文件里的值跟指定的与训练里的值一样。

需求二:已经有其他训练好的模型,想在这个基础上重训

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值