【数学建模】经典简单例题实例1

问题内容:

例1 某人平时下班总是按预定时间到达某处,然然后他妻子开车接他回家。有一天,他比平时提早了三十分钟到达该处,于是此人就沿着他朋友来接他的方向步行回去并在途中遇到了她,这一天,他比平时提前了十分钟到家,问此人共步行了多长时间?

问题描述:

该问题求解涉及到对时间的计算,由于此人比平时提前了十分钟回家并且他到达平时被妻子接到的位置提早了三十分钟,我们可以知道他比平时快十分钟的时间是相对于此人比平时多行走了二十分钟。对于其妻子来说比平时正常时间来说提早回来了十分钟,也就是说明其妻子与此人相遇后并未和平时路线一样,可认为其妻子遇上此人后返回。对于该问题我们创建一个位置图像描述:

问题模型

其中我们规定A为此人下班的位置处,B为平时下班预定时间到达的地点也即为妻子平时接到该人的地点,C为这一天此人走路回家途中遇到妻子的地点,D为家的位置。

模型假设的意义:
  1. 针对问题的主要因素,忽略次要因素;
  2. 使我们要解决的问题简化,使模型更合理化;
  3. 模型假设的重要性——关系建模的成败与优劣。

本题缺少很多因素,对于求解该问题影响很大,日常生活中有大量无法被预测的事件影响该问题使得无法得到与问题所需要求解的时间,我们只能通过假设来尽可能的求解。

思路分析:

由题目描述该人比平时提前十分钟到家。对于该问题我们假设
①该此人的速度为均速前进。
②此人妻子开车速度同样为均速并且对于该段路程妻子每天在相同路段使用时间相同。
③当妻子在路程中行驶遇到此人时,车辆立即返回并忽略上车掉头等其他时间。
④妻子每天在同一时刻从家中出发前往预定时间某处。

由题目所给出的时间,我们设此人到达B平时所用时间为T1,此人到达C平时所用时间为T2,这一天此人所步行的时间为t。

我们可以通过坐标系简易的画出此人在此天和平时的大致行动轨迹。
行动轨迹

由题目给出的条件,此人该天比平时正常到家时间提前了10分钟,通过假设可知妻子用车送此人经过的相同路程CD所用时间相同,也就意味着此人比平时早十分钟到达C点,所以这一天到达C点的时刻为T2-10,由题此人到达B点的时间比平时提前了30分钟,所以这一天到达B点的时刻为T1-30。
因此此人在BC段步行时间:
t=T2-10-(T1-30) (1)
对于其妻子来说,妻子同样比平时提前了10分钟抵达家中,相比于平时到达B点,这次妻子只需要到达C点即可返回家中,也就是说对于提前的十分钟,妻子节省的时间就是节省在BC来回的路程运动的时间。由此可得其妻子节约时间与此人到达BC点的时间之间的关系为:
T2-T1=10/2 (2)
由此假设将(1)(2)两式联立求解,可得
t=25 (min)
满足这些假设得出的结果为此人这天步行时间为25分钟

很抱歉,我作为一个 AI,无法提供文件或文档的下载。但是,我可以为您提供有关层次分析法的例子和答案,以帮助您更好地理解这种数学建模方法。 一个简单的层次分析法的例子是选择一辆汽车。我们可以将选择汽车的标准分为三个级别:外观、性能和价格。在每个级别下,我们可以有几个子因素,例如,外观可以包括车身形状、颜色、轮毂等。性能可以包括加速、刹车、油耗等。价格可以包括购买价格、保险费、维修费等。我们可以使用 1 到 9 的比例尺来评估每个子因素的重要性,1 表示相对不重要,9 表示非常重要。然后,我们可以计算每个子因素的权重,并将它们加权平均以确定每个级别的总权重。最后,我们可以计算每个汽车的总权重,并选择总权重最高的汽车。 下面是一个示例: 外观: - 车身形状:7 - 颜色:9 - 轮毂:4 - 总权重:(7*0.4 + 9*0.5 + 4*0.1)/ 3 = 6.7 性能: - 加速:8 - 刹车:9 - 油耗:4 - 总权重:(8*0.4 + 9*0.4 + 4*0.2)/ 3 = 7.3 价格: - 购买价格:6 - 保险费:3 - 维修费:7 - 总权重:(6*0.4 + 3*0.2 + 7*0.4)/ 3 = 5.7 汽车 A: - 外观:6.7 - 性能:7.3 - 价格:5.7 - 总权重:(6.7*0.4 + 7.3*0.4 + 5.7*0.2)/ 3 = 6.57 汽车 B: - 外观:8.2 - 性能:6.5 - 价格:6.4 - 总权重:(8.2*0.4 + 6.5*0.4 + 6.4*0.2)/ 3 = 7.13 因此,根据层次分析法,我们应该选择汽车 B。 希望这个例子可以帮助您更好地理解层次分析法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值