计算机视觉
文章平均质量分 83
计算机视觉:包含matting、目标检测、图像分割的一些工作
烤粽子
目前专注3D目标检测,自动驾驶。
展开
-
【Paper Reading·3Det 】On the Importance of Pretrained Knowledge Distillation for 3D Object Detection
预训练知识蒸馏在三维目标检测中的重要性原创 2022-10-11 22:10:28 · 723 阅读 · 2 评论 -
NanoDet-Plus及其代码解读
NanoDet-Plus及其代码解读一、前言lossReference:code: Nanodet一、前言之前就有关注过NanoDet,在轻量级检测模型中,卓越的性能,引起了广泛讨论,正巧前端时间看到NanoDet作者更新了第二代模型NanoDet-Plus,同时最近在做一些知识蒸馏的工作,看到NanoDet-Plus也引入了LAD[2]的工作,于是研究了一下NanoDet-Plus代码并进行一些修改实验。关于NanoDet-Plus的实验原理等,直接见作者的文章[1],写得很详细,写得非常棒。本文主原创 2022-02-09 18:19:45 · 4388 阅读 · 0 评论 -
torch.scatter_
torch.scatter_Tensor.scatter_(dim, index, src, reduce=None) → TensorParametersdim (int) – the axis along which to indexindex (LongTensor) – the indices of elements to scatter, can be either empty or of the same dimensionality as src. When empty, the原创 2021-11-02 20:44:54 · 1661 阅读 · 0 评论 -
3D Detection paper reading
## URLpaper: RangeDet:In Defense of Range View for LiDAR-based 3D Object Detectionhttps://arxiv.org/abs/2103.10039TL;DRrange view较多用于语义分割任务,在检测中应用较少,之前有的方法相对于BEV,Point View的方法性能差不少,本文分析了造成range view方法效果差的原因,并据此提出了RangeDet, 在range view方法中取得了一个比较大的提高。..原创 2021-09-24 19:46:20 · 922 阅读 · 0 评论 -
matting笔记_一周小结
去年刚入坑的旧笔记,刚翻出来…1. 利用神经网络做抠图的入坑之作《Deep Image Matting》详情见之前的笔记matting系列论文笔记(一):Deep Image Matting由于image matting的工作没有特别好的综述,有的综述也不是特别新,deep image matting这篇paper就作为进入这个方向的引导论文。这篇paper是Adobe出品,2017年的论文,虽然时间比较久,但是目前很多的matting方法用的还是这篇文章的思路。先通过语义分割网络生成二分类的前景背原创 2021-07-19 16:47:04 · 1983 阅读 · 0 评论 -
图像分割之DeepLab v3+
from PIL import Imageimport mathimport torchimport torch.nn as nnimport torch.nn.functional as F# 一个1×1卷积 + 三个3×3卷积(rate = {6, 12, 18}) + 全局平均池化class ASPP_module(nn.Module): def __init__(self, inplanes, planes, dilation): ''' in原创 2021-07-19 10:42:44 · 1547 阅读 · 2 评论 -
图像分割之Global Convolutional Network(GCN)
论文:Large Kernel Matters ——Improve Semantic Segmentation by Global Convolutional Network主要工作(创新点):提出全局卷积网络(Global Convolutional Network,GCN),用以同时提高语义分割中分类和定位的准确度。提出Boundary Refinement block(BR), 用以提高物体边界的定位。在早期的网络中,有不少大卷积核。后来因为在相同计算复杂度下,堆叠的小滤波器比大内核更高原创 2021-07-16 15:25:01 · 2828 阅读 · 1 评论 -
pytorch DataLoader(3)_albumentations数据增强(分割版)
这篇文章主要是讲怎么利用albumentation来做数据增强的,torchvision的transforms模块本身就包含了很多的数据增强功能,在这里讲解albumentation的原因是albumentation的速度比其他一些数据增强的方法普遍更快一点(主要卖点速度快),功能更齐全。详情见官方文档·英文,可以查看githubAlbumentation的主要特点:这个库是图片处理的library,处理的图片是在HWC格式下,也就是Height,Width,Channale;在相同的对图像的处.原创 2021-06-01 17:46:52 · 3962 阅读 · 2 评论 -
将Albumentations用于语义分割任务
将Albumentations用于语义分割任务本文主要基于Using Albumentations for a semantic segmentation task的翻译修改,有少量修改,添加了一些个人理解批注。Colab notebook示例GitHub notebook示例一些安装和数据获取的步骤,在此就不再赘述了。import randomimport cv2import torchfrom matplotlib import pyplot as pltimport albume翻译 2021-05-28 14:41:14 · 1879 阅读 · 0 评论 -
pytorch DataLoader(2): Dataset,DataLoader自定义训练数据_opencv,skimage,PIL接口
本文主要简单讲解一下opencv,skimage,PIL读取数据并加载到dataset。一些前置知识可以参考前一篇文章pytorch DataLoader(1): opencv,skimage,PIL,Tensor转换以及transforms,这篇文章主要讲了一些opencv,skimage,PIL的格式,读取方式,相互转换等,有助于帮助大家理解本文本文的一些操作等。import osimport numpy as npimport cv2import torchfrom torch.utils原创 2021-05-25 18:41:48 · 1731 阅读 · 4 评论 -
pytorch DataLoader(1): opencv,skimage,PIL,Tensor转换以及transforms
前置知识在使用pytorch进行dataload,transform之前,需要了解一些数据的知识,许多人使用不同的接口因为不熟悉犯了一些错误。在这里对一些常用的OpenCV,PIL,skimage进行了一些总结,以及pytorchvision.transorforms的一些简单使用。import cv2from PIL import Imagefrom skimage import io, transform, colorimport matplotlib.pyplot as pltimport原创 2021-05-24 18:08:44 · 4371 阅读 · 18 评论 -
U^2 Net显著性检测分割抠图
论文:U^2 -Net: Going Deeper with Nested U-Structure for Salient Object Detection代码:https://github.com/xuebinqin/U-2-Net目录1. 简介2. 方法设计2.1 RSU-L2.2 U^2 net网络结构2.3 损失函数设计Reference:Reference:1. 简介这是一篇关于显著性检测的文章,作者是秦雪彬大佬,CVPR2019 BASNet的作者。文章是关于显著性检测的,但其效果突出被原创 2021-03-31 16:45:01 · 2313 阅读 · 3 评论 -
Batch Normalization、Instance normalization简单理解
1. Batch Normalization首先,简短介绍一下Batch Normalization,通常Batch Normalization更为大家所知,所以在此简要介绍BN来引入Instance Normalization。引入BN层主要是为了解决"Internal Covariate Shift"问题,关于这个问题李宏毅老师有个视频讲解比较形象[4],可以参考。Batch Normalization主要是作用在batch上,对NHW做归一化,对小batchsize效果不好,添加了BN层能加快模型原创 2021-02-20 00:42:09 · 6228 阅读 · 1 评论 -
Image Matting 客观评价指标、数据集及主观评价
Image Matting 客观评价指标、数据集及主观评价客观评价指标1. 精度目前常用的几个指标来自于这篇论文[1],SAD, MSE, Gradient error, Connectivity error.1.1 SADSAD(Sum of Absolute Difference)绝对误差和,SAD=∑i∣αi−αi∗∣SAD = \sum_i |\alpha_i - \alpha_i^*|SAD=i∑∣αi−αi∗∣def matte_sad(pred_matte, gt_ma原创 2021-02-04 15:06:24 · 4960 阅读 · 10 评论 -
Pytorch多GPU训练
Pytorch多GPU训练1. torch.nn.DataParalleltorch.nn.DataParallel()这个主要适用于单机多卡。个人一般比较喜欢在程序开始前,import包之后使用os.environ['CUDA_VISIBLE_DEVICES']来优先设定好GPU。例如要使用物理上第0,3号GPU只要在程序中设定如下:os.environ['CUDA_VISIBLE_DEVICES'] = '0,3'**注意:**如上限定物理GPU后,程序实际上的编号默认为device_ids[原创 2021-01-22 17:42:47 · 2181 阅读 · 0 评论 -
matting之trimap生成_膨胀腐蚀
在抠图技术中三分图(trimap)经常被用到,通常使用的方法是膨胀腐蚀(一般在去除噪声的时候先腐蚀再膨胀)。1.import osimport numpy as npimport cv2def random_dilate(alpha, low=1, high=5, mode='constant'): """Dilation. erode""" iterations = np.random.randint(1, 20) erode_ksize = np.random.ran原创 2021-01-15 17:00:52 · 4921 阅读 · 9 评论