数据脱敏风险评估

数据脱敏风险评估

数据脱敏风险评估,是对脱敏的数据的隐私泄露风险进行分析和刻画。其技术主要可分为两类:基 于人工抽查的定性判定方法、和通用的评估技术。其中,基于人工抽查的定性判定方法,指的是按照标 准流程和表格进行专家检查和
判定,然而,这种方法成本十分昂贵。
通用的风险评估技术与数据脱敏方法与模型无关,在学术上通常称为重标识风险(re-identification
risk)的度量。加拿大学者 El Emam 建立较为通用的重标识风险评估理论与方法 ,根据攻击者能力,以 及攻击意图将攻击分为三类场景,并将其形象化命名为⸺检察官攻击 (Prosecutor attack)、记者攻
击 (Journalist att
ack)和营销者攻击 (Marketer attack)[21],相关描述由表 4-1 所示。。

表 4-1 重标识攻击场景与举例

攻击场景 描述 潜在攻击者 举例
检察官攻击 攻击者知道某个特定人员在公开的数据集(背景知识), 且了解特定人员的身份属性信息(攻击能力),由于 好奇特定人员的其他敏感属性(攻击意图)发起针对 特定目标的攻击 1、朋友 2、同学 3、邻居等 某个人了解他的同学是某次受访的调 查对象,他在公开网站的去标识化数 据集去查找他的同学属于哪一行记录
记者攻击 攻击者拥有私有的或者可访问公开的身份数据库(攻 击能力),但他并不知道数据库的人员是否在公开的 去标识数据集中,他通过多次炫耀式攻击证明某人可 以被重新标识,使得公开数据库的组织感到难堪或者 名誉扫地(攻击意图) 1、公众人士 2、研究人员 3、竞争对手等 研究人员将去标识化的医疗患者信息 数据集与公开的州选民的登记表进行 关联,恢复和确认大部分患者信息的 身份
营销者攻击 攻击者拥有私有的或者可访问公开的身份数据库(攻 击能力),他将其与去标识化数据集进行关联,实现 对身份数据库的人进行扩展更多维度的画像(攻击意 图),无需证明重标识结果的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值