冒泡排序,基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
public class bubbleSort {
public bubbleSort(){
int a[]={49,38,65,97,76,13,27,49,78,34,12,23,34,15,35,25,53,51};
int temp=0;
for(int i=0;i<a.length-1;i++){
for(int j=0;j<a.length-1-i;j++){
if(a[j]>a[j+1]){
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
for(int i=0;i<a.length;i++)
System.out.println(a[i]);
}
}
选择排序的基本思想:第i趟简单选择排序是指通过n-i次关键字的比较,从n-i+1个记录中选出关键字最小的记录,并和第i个记录进行交换。先临时记录其位置,只有在一趟循环完以后确定了最小的数据,才会发生交换。
public class ChoiceSort {
public static void _choiceSort(Integer[] a) {
if (a == null || a.length <= 0) {
return;
}
for (int i = 0; i < a.length; i++) {
int min = i; /* 将当前下标定义为最小值下标 */
for (int j = i + 1; j < a.length; j++) {
if (a[min] > a[j]) { /* 如果有小于当前最小值的关键字 */
min = j; /* 将此关键字的下标赋值给min */
}
}
if (i != min) {/* 若min不等于i,说明找到最小值,交换 */
int tmp = a[min];
a[min] = a[i];
a[i] = tmp;
}
}
}
}
直接插入排序,基本思想:在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
publicclass insertSort {
public insertSort(){
int a[]={49,38,65,97,76,13,27,49,78,34,23,34,15,35,25,53,51};
int temp=0;
for(int i=1;i<a.length;i++){
int j=i-1;
temp=a[i]; //最头上的元素已经被保存
for(;j>=0&&temp<a[j];j--){
a[j+1]=a[j]; //将大于temp的值整体后移一个单位
}
a[j+1]=temp;
}
for(int i=0;i<a.length;i++)
System.out.println(a[i]);
}
}
public class Insertion {
public static void sort(int[] arr){
int pos,temp;
for(int i=1;i<arr.length;i++){
pos = i;
while(pos!=0&&arr[pos]<arr[pos-1]){
temp = arr[pos];
arr[pos] = arr[pos-1];
arr[pos-1] = temp;
pos--;
}
}
}
小的在前
快速排序基本思想:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。根据以上步骤,很容易得出答案C
public class QuickSort {
public static void main(String[] args) {
int[] x = { 9, 2, 4, 7, 3, 7, 10 };
System.out.println(Arrays.toString(x));
int low = 0;
int high = x.length - 1;
quickSort(x, low, high);
System.out.println(Arrays.toString(x));
}
public static void quickSort(int[] arr, int low, int high) {
if (arr == null || arr.length == 0)
return;
if (low >= high)
return;
// 选择基准点
int middle = low + (high - low) / 2;
int pivot = arr[middle];
// 使得 left < pivot 和 right > pivot
int i = low, j = high;
while (i <= j) {
//如果小的话就继续下一个
while (arr[i] < pivot) {
i++;
}
//大的话也是继续下一个
while (arr[j] > pivot) {
j--;
}
//如果这两种情况都不是就交换
if (i <= j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
}
// 递归调用两个子部分
if (low < j)
quickSort(arr, low, j);
if (high > i)
quickSort(arr, i, high);
}
}
归并排序,基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
堆排序,基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
希尔排序(最小增量排序),基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
这篇文章对排序归纳整理:http://blog.csdn.net/pzhtpf/article/details/7559943