【回归算法解析系列07】决策树回归(Decision Tree Regressor)

【回归算法解析系列】决策树回归(Decision Tree Regressor)

1. 决策树回归:非参数化的非线性建模

决策树回归(Decision Tree Regressor)是一种基于树结构的非参数模型,它在机器学习领域中占据着重要的地位。其核心优势体现在多个方面:

1.1 处理非线性关系

在现实世界的数据中,很多特征与目标变量之间的关系并非简单的线性关系。决策树回归无需对数据的分布做出任何假设,能够自动捕捉特征之间的复杂交互。例如,在预测房价时,房屋的面积、房龄、周边配套设施等因素可能相互影响,决策树可以通过递归地划分数据空间,灵活地适应这种非线性关系。

在这里插入图片描述

1.2 可解释性强

决策树的树结构可以直观地可视化,这使得模型的决策过程变得透明。通过观察树的结构,我们可以清晰地看到每个特征在决策过程中的作用,从而支持特征重要性分析。比如在金融风控领域,决策树可以帮助我们提取出明确的规则,如“客户的信用评分低于600且贷款金额超过50万则风险较高”,这对于业务人员理解和解释模型的决策非常有帮助。

在这里插入图片描述

1.3 适应混合数据类型

在实际应用中,数据往往包含数值型和类别型特征。决策树回归能够同时处理这两种类型的特征,无需进行复杂的数据转换。例如,在医疗诊断中,患者的年龄、体温等数值型特征可以与疾病类型、症状等类别型特征一起作为输入,决策树可以有效地利用这些信息进行预测。

适用场景

  • 需要模型解释性的业务场景(如金融风控规则提取):在金融领域,决策的可解释性至关重要。监管机构要求金融机构能够清晰地解释模型的决策依据,决策树的可解释性使其成为金融风控的理想选择。通过分析决策树的结构,我们可以提取出具体的风险规则,帮助业务人员进行风险评估和决策。
  • 特征与目标存在复杂非线性关联(如医疗诊断指标与疾病程度):医疗数据往往具有高度的复杂性和非线性。例如,某些疾病的发生可能与多个因素相互作用有关,决策树回归可以自动捕捉这些复杂的关系,为疾病的诊断和治疗提供有价值的信息。

2. CART算法与分裂准则

2.1 算法流程

CART(Classification and Regression Trees)算法是构建决策树的常用算法,它通过递归二分法来构建树。具体步骤如下:

2.1.1 选择最优特征与切分点

在每一个节点上,CART算法会遍历所有的特征和可能的切分值,寻找能够使分裂后子节点纯度提升最大的特征和切分点。这个过程类似于在一个多维空间中不断地划分区域,使得每个区域内的数据尽可能纯净。

在这里插入图片描述

2.1.2 计算分裂增益

为了衡量分裂的好坏,CART算法使用分裂增益来进行评估。常用的分裂准则有均方误差(MSE)和平均绝对误差(MAE),下面我们将详细介绍这两种准则。

2.1.3 递归分裂

在选择了最优特征和切分点后,CART算法会将节点分裂成两个子节点,并对子节点重复上述过程,直到满足停止条件。停止条件可以是树的深度达到最大值、节点中的样本数小于某个阈值等。

2.2 分裂准则:均方误差(MSE)与平均绝对误差(MAE)

2.2.1 MSE(方差减少)

均方误差是一种常用的衡量回归模型误差的指标,在决策树回归中,我们使用MSE的减少量来选择最优的分裂点。其计算公式如下:
[
\Delta \text{MSE} = \text{MSE}\text{父节点} - \left( \frac{N\text{左}}{N} \text{MSE}\text{左} + \frac{N\text{右}}{N} \text{MSE}_\text{右} \right)
]
其中, N N N 是父节点的样本数, N 左 N_\text{左} N N 右 N_\text{右} N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Is code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值