【回归算法解析系列08】随机森林回归(Random Forest Regressor)

【回归算法解析系列】随机森林回归(Random Forest Regressor)

1. 随机森林回归:集成学习的威力

随机森林回归(Random Forest Regressor)作为集成学习领域的重要算法,巧妙地借助了**Bootstrap聚合(Bagging)**的力量,将多个决策树组合在一起,从而极大地提升了模型的性能和鲁棒性。它的核心优势显著,在众多实际应用场景中发挥着关键作用。

1.1 核心优势

  • 降低方差:在决策树回归中,单棵决策树容易受到训练数据的影响,具有较高的方差,导致模型的稳定性较差。随机森林回归通过构建多棵决策树,并对它们的预测结果进行平均,有效降低了这种方差。可以想象,每棵决策树就像是一个独立的“预测专家”,它们各自从不同的角度对数据进行分析和预测。当把这些“专家”的意见综合起来时,就能够减少单个“专家”可能出现的偏差,使得最终的预测结果更加稳定可靠。
  • 特征随机性:随机森林在构建每棵决策树时,并不是使用全部的特征,而是仅从所有特征中随机选择一部分特征。这种特征随机性使得每棵树在构建时关注的特征组合不同,进而增强了模型的泛化能力。例如,在预测房屋价格时,可能存在诸如房屋面积、房龄、周边配套设施等众多特征。如果每棵树都基于全部特征进行构建,那么这些树之间的相似性可能会很高,模型的泛化能力就会受限。而通过随机选择部分特征,每棵树可以挖掘出不同特征组合与房价之间的关系,从而更好地适应各种不同的数据情况。
  • 内置评估:随机森林利用袋外(OOB)样本进行无偏误差估计,这是它的一大特色。在训练过程中,每棵树在构建时大约有36.8%的样本不会被选中,这些未被选中的样本就是OOB样本。通过使用这些OOB样本进行评估,可以得到一个无偏的误差估计,无需再专门划分验证集。这不仅节省了数据,还提供了一种高效的模型评估方式。

1.2 适用场景

  • 高噪声数据(如金融时序预测):金融市场复杂多变,受到众多因素的影响,数据中往往包含大量噪声。例如在股票价格预测中,股价会受到宏观经济形势、公司内部业绩、市场情绪等多种因素的综合影响,这些因素的复杂性使得股价数据存在较大噪声。随机森林回归能够通过多棵树的综合预测,有效降低噪声的干扰,提供相对稳定的预测结果。
  • 需要稳定预测结果的工业级应用:在工业生产中,许多关键环节需要精确且稳定的预测,如设备故障预测、产品质量控制等。随机森林回归的稳定性和鲁棒性使其能够满足这些工业级应用的需求。例如,在预测设备寿命时,通过分析设备运行过程中的各种传感器数据,随机森林可以综合考虑多个因素之间的复杂关系,给出较为可靠的预测结果,帮助企业提前做好设备维护和更换计划,避免因设备故障导致的生产中断。

2. 核心原理与数学推导

2.1 Bootstrap聚合(Bagging)

Bootstrap聚合是随机森林回归的基础。它通过对原始数据集进行有放回抽样的方式,生成 ( B ) 个子集。每一个子集都可以看作是原始数据集的一个“缩影”,但又包含了原始数据的部分特征和信息。基于这些子集,分别训练一棵决策树。最终的预测结果则是将这 ( B ) 棵树的预测结果进行平均,公式如下:
[
\hat{y} = \frac{1}{B} \sum_{b=1}^B f_b(\mathbf{x})
]
其中,( \hat{y} ) 是最终的预测值,( f_b(\mathbf{x}) ) 是第 ( b ) 棵决策树对样本 ( \mathbf{x} ) 的预测值,( B ) 是决策树的数量。

从偏差 - 方差分解的角度来看,Bagging具有显著的方差减少效果,其公式为:
[
\text{Var}(\hat{y}) = \frac{\text{Var}(f)}{B} + \rho \sigma^2
]
在这个公式中,( \rho ) 是树间相关系数,( \sigma^2 ) 是每棵树的方差。随着决策树数量 ( B ) 的增加,( \frac{\text{Var}(f)}{B} ) 这一项会逐渐减小,从而降低了整体的方差。这就好比在一场比赛中,有多个评委打分,当评委数量足够多时,个别评委的偏差对最终平均分的影响就会变小。

在这里插入图片描述

2.2 特征随机性

除了Bootstrap聚合,特征随机性也是随机森林回归的关键特性。在每棵树进行分裂时,随机森林并不会考虑所有的特征,而是仅从所有特征中选择一个随机子集(通常 ( m = \sqrt{p} ) 或 ( p/3 ),( p ) 为总特征数)。这样做的目的是进一步降低树与树之间的相关性。

假设我们有10个特征来预测某个目标变量,在构建第一棵树时,可能随机选择了其中的3个特征,如特征1、特征4和特征7。而在构建第二棵树时,又随机选择了另外3个不同的特征,如特征3、特征6和特征9。这样每棵树关注的特征组合不同,它们之间的相关性就会降低,从而使得整个模型能够学习到更丰富的信息,提高泛化能力。

在这里插入图片描述

3. 代码实战:股票价格预测

3.1 数据集准备(雅虎财经数据)

在这个案例中,我们使用雅虎财经的数据来预测苹果公司的股票价格。首先,通过yfinance库下载苹果公司在2018年1月1日至2023年1月1日期间的股价数据,并选取其中的开盘价(Open)、最高价(High)、最低价(Low)、成交量(Volume)和收盘价(Close)这几个关键指标。

import yfinance as yf
import pandas as pd

# 下载苹果公司股价数据
data = yf.download('AAPL', start='2018-01-01', end='2023-01-01')
data = data[['Open', 
### 支持向量机(SVM)回归 支持向量机最初用于分类问题,但在引入ε-insensitive损失函数后可以应用于回归分析。SVM回归的目标是最小化预测值与实际值之间误差的同时保持模型尽可能简单。具体来说,在构建支持向量回归模型时,允许一定范围内的预测偏差而不受惩罚,只有当预测值偏离真实值超过预定义阈值ε时才会被计入成本。 对于SVM回归而言,核技巧同样适用,这使得该方法能够处理非线性数据分布。常用的内核包括线性和径向基函数(RBF)[^1]。 ```r library(e1071) model <- svm(y ~ ., data = training_data, type="eps-regression", kernel="radial") predictions <- predict(model, newdata=test_data) ``` ### 梯度提升回归(Gradient Boosting Regression) 梯度提升是一种迭代式的机器学习技术,旨在最小化给定的成本函数。其核心思想是以前一轮训练产生的残差为基础来调整后续弱学习器的学习方向,从而逐步逼近最优解。GBRT(基于树的梯度提升)则是利用决策树作为基础估计器的一种实现方式。 每棵树都试图纠正之前所有树所犯下的错误;随着更多树木加入到集合中,整体性能会逐渐提高直到达到设定的最大数量或满足其他停止条件为止[^2]。 ```python from sklearn.ensemble import GradientBoostingRegressor gb_model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42) gb_model.fit(X_train, y_train) y_pred_gb = gb_model.predict(X_test) ``` ### 随机森林回归(Random Forest Regression) 随机森林是由多个决策树组成的集成学习算法。在RF回归过程中,通过对原始样本集进行有放回抽样得到若干子样本集,并针对每个子样本建立一棵独立生长的CART回归树。最终预测结果取各棵树木输出均值得出。 这种方法不仅提高了泛化能力还降低了过拟合风险,因为单颗 CART 树容易受到噪声影响而变得复杂度过高。此外,由于每次分裂节点只考虑部分特征参与竞争,所以也增强了抗干扰特性[^4]。 ```python from sklearn.ensemble import RandomForestRegressor rf_regressor = RandomForestRegressor(n_estimators=100, random_state=42) rf_regressor.fit(X_train, y_train) y_pred_rf = rf_regressor.predict(X_test) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Is code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值