题目名称:Even Parity
题意:给出一个n*n的 0、1矩阵,把尽量少的0改成1,使得每个元素的上下左右的元素之和都为偶数。
思路:这道题暴力枚举全部肯定不行,但我们手写模拟下会发现其实枚举第一行就行了,下面都可以根据第一行推出来
比如 0 1 0 1
接着就是设第二行第一个数为 x ,
则 0 1 0 1 所以 x + 1 应该为偶数,即 x 为 1,
x
同理, 0 1 0 1 所以 0 + x + 0 应该为偶数,即 x 为 0
1 x
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
const int MAXN=20;
const int INF=0x3f3f3f3f;
int a[MAXN][MAXN],b[MAXN][MAXN],n;
int check(int s)
{
memset(b,0,sizeof(b));
for(int i=0;i<n;i++)
{
if(s&(1<<i))
b[0][i]=1; //子集中存在的1在b数组里标记
else if(a[0][i]==1) //1不能转换为0
return INF;
}
for(int i=1;i<n;i++)
for(int j=0;j<n;j++) //判断b[i-1][j]的上,左,右三个元素之和
{
int sum=0;
if(i>1)
sum+=b[i-2][j];
if(j>0)
sum+=b[i-1][j-1];
if(j<n-1)
sum+=b[i-1][j+1];
b[i][j]=sum&1;
if(b[i][j]==0&&a[i][j]==1) //1不能 转换为0
return INF;
}
int z=0;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(a[i][j]!=b[i][j])
z++;
}
return z;
}
int main()
{
int t;
scanf("%d",&t);
for(int k=1;k<=t;k++)
{
scanf("%d",&n);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d",&a[i][j]);
int sum=INF;
for(int i=0;i<(1<<n);i++) //判断第一行的子集
sum=min(sum,check(i));
if(sum==INF)
sum=-1;
printf("Case %d: %d\n",k,sum);
}
return 0;
}