AI浪潮下的失业危机
StableDuffision,midjourney的问世,无情地抢夺这原画师设计师的饭碗。今年初Sora大模型也让视频制作者后背发凉。AI无情地冲击着各个行业,但是这些行业似乎都是与计算机,互联网密切相关的高脑力。正当大家以为AI取代的下一个岗位会是程序员,动画师之类时。萝卜快跑给出了目标:司机。
出租车司机在无人驾驶出现之前已经经历过网约车的分羹。而现在,无人驾驶的出现似乎已成为所有职业司机的掘墓者。
但是叫苦的似乎只有司机,消费者对萝卜快跑的接受度非常高,武汉首日订单量单车突破20单。而且各网络平台的留言区希望全国普及的声音非常大。可见,传统职业司机确实时受到了灭顶之灾。
无人驾驶的潜在风险
1. 技术不成熟:
- 尽管无人驾驶技术已经取得了显著进展,但仍然存在一些技术难题尚未解决。例如,技术水平不足、测试不足、模型不够精准等问题可能导致车辆操作失误,造成意外事故。
2. 复杂多变的交通环境:
- 当无人驾驶汽车驶入复杂多变的交通环境时,可能会面临难以预测的挑战。例如,交叉口的交通情况、突发事件等都可能对系统的安全性产生影响。
3. 数据安全问题:
- 无人驾驶汽车行驶过程中需要收集大量敏感信息,如位置、方向等。如果这些数据遭到黑客攻击或泄露,可能会对车辆安全构成严重威胁。
4. 人机交互问题:
- 在出现紧急情况时,人与无人驾驶系统的交互问题可能影响安全。驾驶员在无需操控汽车的情况下可能陷入不适应状态,导致无法迅速正确地应对紧急状况。
新时代的马粪危机
在19世纪末,随着工业革命的深入和城市化进程的加速,欧洲各大城市,尤其是伦敦,迅速崛起为人口密集、经济繁荣的大都市。然而,这些城市的交通运输主要依赖马匹,无论是公共交通还是货物运输,都离不开马车的身影。由于马匹数量庞大,每天产生的粪便量惊人。据估算,伦敦街道每天的马粪厚度会超过1米。
但是人们没想到的是,汽车出现了。马粪危机也自然消除了。
如今的有人驾驶工具,会出现疲劳驾驶,拒客载客,随意鸣笛,不安交规行驶。而无人驾驶的出现会极大消除这些问题。
需要更智能的监管系统
萝卜快跑打响无人驾驶经济的第一枪,未来更多的无人配送,无人运输都会普及,这些都需要强大的交通监管系统。
我们mapmost为智慧交通量身定做的监管系统,具有以下功能:
车辆跟踪与定位:利用GPS、北斗等卫星导航系统及无线通信技术,对无人驾驶汽车进行实时跟踪和精确定位,确保车辆行驶轨迹的准确记录和安全监控。
状态监测:实时监控车辆的行驶速度、方向、加速度等状态信息,以及车辆内部系统(如传感器、控制器等)的工作状态,确保车辆正常运行。
事故预警与响应:通过分析车辆行驶数据和道路环境信息,预测可能发生的交通事故,并提前发出预警信号。同时,在事故发生时,迅速启动应急响应机制,减少事故损失。
交通违法监测:利用高清摄像头和图像识别技术,监测无人驾驶汽车是否遵守交通规则,如闯红灯、超速、违规变道等,并对违法行为进行记录和处罚。
交通数据收集:采集无人驾驶汽车的行驶数据、道路环境数据、交通流量数据等,为交通规划和决策提供科学依据。
数据分析与挖掘:运用大数据和人工智能技术,对收集到的数据进行深度分析和挖掘,发现交通规律和问题,提出优化建议。
法规遵从:确保无人驾驶汽车及其监管系统符合国家和地方的相关法律法规要求。
标准制定:参与或推动无人驾驶汽车及其监管系统的标准化工作,提高行业规范性和统一性。
关注我们,携手开启智慧交通新篇章。
关注Mapmost,持续更新GIS、三维美术、计算机技术干货
Mapmost是一套以三维地图和时空计算为特色的数字孪生底座平台,包含了空间数据管理工具(Studio)、应用开发工具(SDK)、应用创作工具(Alpha)。平台能力已覆盖城市时空数据的集成、多源数据资源的发布管理,以及数字孪生应用开发工具链,满足企业开发者用户快速搭建数字孪生场景的切实需求,助力实现行业领先。