
人工智能初学习(邱书)
文章平均质量分 71
马上升研究生,人工智能方向,初学习人工智能
Mars_prime
这个作者很懒,什么都没留下…
展开
-
邱书精华(自认为)
给定训练集𝒟,我们希望让计算机从一个函数集合ℱ = {𝑓1 (𝒙), 𝑓2 (𝒙), ⋯}中自动寻找一个“最优”的函数𝑓 ∗ (𝒙) 来近似每个样本的特征向量 𝒙 和标签 𝑦 之间 的真实映射关系.对于一个样本𝒙,我们可以通过函数𝑓 ∗ (𝒙)来预测其标签的值。训练集和测试集.训练集(Training Set)中的样本是用来训练模型的,也叫训练样本(Training Sample),而测试集(Test Set)中的样本是用来检验模型好坏 的,也叫测试样本(Test Sample).。原创 2023-05-31 23:36:42 · 161 阅读 · 0 评论 -
第二章 机器学习(邱书)
通俗地讲机器学习ML就是让计算机从数据中进行自动学习得到某种知识或规律.作为一门学科机器学习通常指一类问题以及解决这类问题的方法即如何从观测数据样本中寻找规律并利用学习到的规律模型对未知或无法观测的数据进行预测。机器学习 ≈ 构建一个映射函数机器学习即如何从观测数据(样本)中寻找规律,并利用学习到的规律(模型)对未知或无法观测的数据进行预测。我们可以将一个标记好特征以及标签的芒果看作一个样本Sample),也经常称为示例Instance).。原创 2023-05-31 23:36:37 · 154 阅读 · 0 评论 -
第一章:人工智能概述
通过构建具有一定“深度”的模型,可以让模型来自动学习好的特征表示(从底层特征,到中层特征,再到高层特征),从而最终提升预测或识别的准确性。表示学习的难点在于,无法提前知道需要什么特征,就没有明确目标去做特征提取。机器学习主要关注预测到结果的一个过程,就是一个函数的映射。好的表示”是一个非常主观的概念,没有一个明确的标准。什么是好的数据表示?特征提取VS表示学习。原创 2023-05-30 23:13:04 · 138 阅读 · 0 评论 -
人工智能大体情况
邱书摘要原创 2023-05-30 20:54:16 · 104 阅读 · 0 评论