hdu 4089 Activation 期望dp

hdu 4089 Activation //期望dp


题意
给你一个队列,最开始有n个人,你前面有m-1个人。
现在每个时间点都会发生一些事情。
1. 队首的人有p1的概率继续停留在队首。
2. 队首的人有p2的概率离开队首,进入队尾。
3. 队首的人有p3的概率离开队列。
4. 队列有p4的概率会崩溃。
求队列崩溃时,你前面的人数小于等于k-1的概率。
n,m,k < 2000.

简要思路

d p [ i ] [ j ] dp[i][j] dp[i][j]表示队列中人数为 i i i个,排在第 j j j位的期望次数。
那么 a n s = ∑ i = 1 n ∑ j = 1 k d p [ i ] [ j ] ⋅ p 4 ans = \sum_{i=1}^n\sum_{j =1}^kdp[i][j] \cdot p4 ans=i=1nj=1kdp[i][j]p4
考虑转移
d p [ i ] [ j ] = d p [ i + 1 ] [ j + 1 ] ⋅ p 3 + d p [ i ] [ j + 1 ] ⋅ p 2 + d p [ i ] [ j ] ⋅ p 1 dp[i][j]= dp[i+1][j+1]\cdot p3 + dp[i][j+1]\cdot p2 + dp[i][j]\cdot p1 dp[i][j]=dp[i+1][j+1]p3+dp[i][j+1]p2+dp[i][j]p1

特别的对 i = j i=j i=j
d p [ i ] [ i ] = d p [ i + 1 ] [ i + 1 ] ⋅ p 3 + d p [ i ] [ i ] ⋅ p 1 + d p [ i ] [ 1 ] ∗ p 2 dp[i][i]= dp[i+1][i+1]\cdot p3 + dp[i][i]\cdot p1 + dp[i][1]*p2 dp[i][i]=dp[i+1][i+1]p3+dp[i][i]p1+dp[i][1]p2

i = n , j = m i=n,j=m i=n,j=m
d p [ n ] [ m ] = d p [ n ] [ m + 1 ] ⋅ p 2 + d p [ n ] [ m ] ⋅ p 1 + 1 dp[n][m] = dp[n][m+1]\cdot p2 + dp[n][m]\cdot p1 +1 dp[n][m]=dp[n][m+1]p2+dp[n][m]p1+1
至此得到一个 n 2 n^2 n2个方程。
对其高斯消元即可解出。
但是 n ≤ 2000 n\leq 2000 n2000 那么这样的复杂度为 n 6 n^6 n6 。肯定不行。
注意到,上述转移式子 i = n i=n i=n
d p [ n ] [ j ] = d p [ n ] [ j + 1 ] ⋅ p 2 + d p [ n ] [ j ] ⋅ p 1 dp[n][j] = dp[n][j+1]\cdot p2 + dp[n][j]\cdot p1 dp[n][j]=dp[n][j+1]p2+dp[n][j]p1

d p [ n ] [ j ] = d p [ n ] [ j + 1 ] ⋅ p 2 1 − p 1 dp[n][j] = \frac{dp[n][j+1]\cdot p2}{1-p1} dp[n][j]=1p1dp[n][j+1]p2
展开:
d p [ n ] [ 1 ] = d p [ n ] [ 2 ] ⋅ p 2 / ( 1 − p 1 ) d p [ n ] [ 2 ] = d p [ n ] [ 3 ] ⋅ p 2 / ( 1 − p 1 ) d p [ n ] [ 3 ] = d p [ n ] [ 4 ] ⋅ p 2 / ( 1 − p 1 ) . . . d p [ n ] [ n ] = d p [ n ] [ 1 ] ⋅ p 2 / ( 1 − p 1 ) dp[n][1] = dp[n][2] \cdot p2/ (1-p1)\\ dp[n][2] = dp[n][3] \cdot p2/ (1-p1)\\ dp[n][3] = dp[n][4] \cdot p2/ (1-p1)\\ ...\\ dp[n][n] = dp[n][1]\cdot p2/(1-p1)\\ dp[n][1]=dp[n][2]p2/(1p1)dp[n][2]=dp[n][3]p2/(1p1)dp[n][3]=dp[n][4]p2/(1p1)...dp[n][n]=dp[n][1]p2/(1p1)
可以手动模拟在 O ( n ) O(n) O(n)的时间内解出 d p [ n ] [ i ] dp[n][i] dp[n][i]

那么 d p [ n − 1 ] [ j ] = d p [ n ] [ [ j + 1 ] ⋅ p 3 + d p [ n − 1 ] [ j + 1 ] ⋅ p 2 + d p [ n − 1 ] [ j ] ⋅ p 1 dp[n-1][j] = dp[n][[j+1] \cdot p3 + dp[n-1][j+1]\cdot p2 + dp[n-1][j]\cdot p1 dp[n1][j]=dp[n][[j+1]p3+dp[n1][j+1]p2+dp[n1][j]p1
d p [ n ] [ j + 1 ] dp[n][j+1] dp[n][j+1] 已经解出。那么同样的可以上述方法解出 d p [ n − 1 ] [ i ] dp[n-1][i] dp[n1][i]
到这里此问题已经解出来啦,总的复杂度为 O ( n 2 ) O(n^2) O(n2)


注意:
n = 1 n=1 n=1的情况要特殊处理。
注意 p 1 = 1 , p 2 = 0 p1=1,p2=0 p1=1,p2=0时的处理。


代码
#include <bits/stdc++.h>

using namespace std;
#define fi first
#define se second
#define SQ(x) ((x)*(x))
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const ll inf = 1e18;
const int maxn = 2e3 + 100;
const double eps = 1e-9;
double tp[maxn];
double G(double a[], double b[], double c[], int n) {
    for (int i = 1; i <= n; ++i) tp[i] = c[i];
    double a0 = a[1], b0 = b[1], c0 = c[1];
    for (int i = 2; i <= n - 1; ++i) {
        double temp = -b0 / a[i];
        b0 = b[i] * temp, c0 = c0 + c[i] * temp;
    }
    double temp = -a0 / a[n];
    c0 = (c[n] * temp + c0) / (b[n] * temp + b0);
    c[n] = c0;
    for (int i = n - 1; i >= 1; --i) {
        c[i] = (c[i] - b[i] * c[i + 1]) / a[i];
    }
    for (int i = 1; i < n; ++i) {
        if (fabs(b[i]) < eps) c[i] = tp[i] / a[i];
    }
    if (fabs(a[n]) < eps) c[n] = tp[n] / b[n];
}
double dp[2][maxn], a[maxn], b[maxn], c[maxn];

int main() {
//    freopen("1.in", "r", stdin);
//    freopen("1.out", "w", stdout);
    int n, m, k;
    double p1, p2, p3, p4;
    cout << fixed << setprecision(5);
    while (cin >> n >> m >> k >> p1 >> p2 >> p3 >> p4) {
        int rt = 0;
        memset(dp[rt], 0, sizeof dp[rt]);
        if (fabs(p1 - 1) < eps || fabs(p1 + p2 - 1) < eps) {
            cout << 0.0 << '\n';
            continue;
        }
        double ans = 0;
        k = min(k, n);
        for (int i = n; i >= 2; --i) {
            rt ^= 1;
            memset(dp[rt], 0, sizeof dp[rt]);
            for (int j = 1; j <= i; ++j) {
                a[j] = 1, b[j] = -p2 / (1 - p1), c[j] = dp[rt ^ 1][j + 1] * p3 / (1 - p1);
            }
            if (i == n) c[m] += 1 / (1 - p1);
            swap(a[i], b[i]);
            G(a, b, c, i);
            for (int j = 1; j <= i; ++j) dp[rt][j] = c[j];
            for (int j = 1; j <= k; ++j) ans += dp[rt][j];
        }
        if (n != 1) dp[rt][1] = dp[rt][2] * p3 / (1 - p1 - p2);
        else dp[rt][1] = 1 / (1 - p1 - p2);
        ans += dp[rt][1];
        ans *= p4;
        if (fabs(p4) < eps) ans = 0;
        ans = abs(ans);
        cout << ans << '\n';
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完整版:https://download.csdn.net/download/qq_27595745/89522468 【课程大纲】 1-1 什么是java 1-2 认识java语言 1-3 java平台的体系结构 1-4 java SE环境安装和配置 2-1 java程序简介 2-2 计算机中的程序 2-3 java程序 2-4 java类库组织结构和文档 2-5 java虚拟机简介 2-6 java的垃圾回收器 2-7 java上机练习 3-1 java语言基础入门 3-2 数据的分类 3-3 标识符、关键字和常量 3-4 运算符 3-5 表达式 3-6 顺序结构和选择结构 3-7 循环语句 3-8 跳转语句 3-9 MyEclipse工具介绍 3-10 java基础知识章节练习 4-1 一维数组 4-2 数组应用 4-3 多维数组 4-4 排序算法 4-5 增强for循环 4-6 数组和排序算法章节练习 5-0 抽象和封装 5-1 面向过程的设计思想 5-2 面向对象的设计思想 5-3 抽象 5-4 封装 5-5 属性 5-6 方法的定义 5-7 this关键字 5-8 javaBean 5-9 包 package 5-10 抽象和封装章节练习 6-0 继承和多态 6-1 继承 6-2 object类 6-3 多态 6-4 访问修饰符 6-5 static修饰符 6-6 final修饰符 6-7 abstract修饰符 6-8 接口 6-9 继承和多态 章节练习 7-1 面向对象的分析与设计简介 7-2 对象模型建立 7-3 类之间的关系 7-4 软件的可维护与复用设计原则 7-5 面向对象的设计与分析 章节练习 8-1 内部类与包装器 8-2 对象包装器 8-3 装箱和拆箱 8-4 练习题 9-1 常用类介绍 9-2 StringBuffer和String Builder类 9-3 Rintime类的使用 9-4 日期类简介 9-5 java程序国际化的实现 9-6 Random类和Math类 9-7 枚举 9-8 练习题 10-1 java异常处理 10-2 认识异常 10-3 使用try和catch捕获异常 10-4 使用throw和throws引发异常 10-5 finally关键字 10-6 getMessage和printStackTrace方法 10-7 异常分类 10-8 自定义异常类 10-9 练习题 11-1 Java集合框架和泛型机制 11-2 Collection接口 11-3 Set接口实现类 11-4 List接口实现类 11-5 Map接口 11-6 Collections类 11-7 泛型概述 11-8 练习题 12-1 多线程 12-2 线程的生命周期 12-3 线程的调度和优先级 12-4 线程的同步 12-5 集合类的同步问题 12-6 用Timer类调度任务 12-7 练习题 13-1 Java IO 13-2 Java IO原理 13-3 流类的结构 13-4 文件流 13-5 缓冲流 13-6 转换流 13-7 数据流 13-8 打印流 13-9 对象流 13-10 随机存取文件流 13-11 zip文件流 13-12 练习题 14-1 图形用户界面设计 14-2 事件处理机制 14-3 AWT常用组件 14-4 swing简介 14-5 可视化开发swing组件 14-6 声音的播放和处理 14-7 2D图形的绘制 14-8 练习题 15-1 反射 15-2 使用Java反射机制 15-3 反射与动态代理 15-4 练习题 16-1 Java标注 16-2 JDK内置的基本标注类型 16-3 自定义标注类型 16-4 对标注进行标注 16-5 利用反射获取标注信息 16-6 练习题 17-1 顶目实战1-单机版五子棋游戏 17-2 总体设计 17-3 代码实现 17-4 程序的运行与发布 17-5 手动生成可执行JAR文件 17-6 练习题 18-1 Java数据库编程 18-2 JDBC类和接口 18-3 JDBC操作SQL 18-4 JDBC基本示例 18-5 JDBC应用示例 18-6 练习题 19-1 。。。
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值