详解如何将TensorFlow训练的模型移植到Android手机

本文详细讲解如何将自己训练的TensorFlow (TF) 模型移植到Android手机,包括模型保存、Android项目配置、添加资源和调用接口等步骤。作者强调了正确保存模型结构和参数值的重要性,并提供了相关教程链接。
摘要由CSDN通过智能技术生成

前言

本文中出现的TF皆为TensorFlow的简称。

先说两句题外话吧,TensorFlow 前两天热热闹闹的发布了正式版r1.0,可感觉自己才刚刚上手 r0.12,这个时代发展的太快,脚步是一刻也不能停啊~

但是不得不吐槽 TensorFlow的向下兼容做的实在不太友好,每次更新完版本,以前的代码就跑不动,各种提示您使用的函数已经不存在。。。

代码积攒的越来越多,全部针对新版本翻改一遍,工程真是浩大。但是喜新厌旧,手贱如我,每次都忍不住点了更新。不过这次忍的还算不错,到目前还没更新,继续忍住

在之前的文章中,我介绍了如何实现 TensorFlow官网的Mobile教程:
【将Tensorflow移植到安卓手机,实现物体识别、行人检测和图像风格迁移】
但在那个教程中,TensorFlow提供了完整的、已经构建好的Android项目,我们需要做的总结下来只有3步:1、搭建环境;2、编译;3、安装到手机

这当然还不够,我们的最终目的当然是要为我所用,所以怎样才能移植自己训练好的TF模型到安卓手机呢?换句话说,怎样将训练好的模型放入Android项目中并进行成功编译?又或者怎样创建自己的Android Tensorflow项目?

PS:
之前没有安卓开发的经验,纯粹是为了实现将TF模型移植到手机才开始上手,目前属于入门级小白,如有错误之处,欢迎批评指正!


手机调用TF模型的过程简介:

1、 保存训练完毕的TF模型
2、 在Android项目中导入TF模型、导入Android平台调用TF模型需要的jar包和so文件 (它们负责TF模型的解析和运算)
3、定义变量、存储数据,通过jar包提供的接口进行模型的调用


环境

TensorFlow版本: r0.12
python 版本:2.7
Python IDE: Spyder
Android IDE : Android Studio


移植过程

我们以mnist数据集上自己训练的一个图像识别模型为例,进行讲解

一、 在使用python代码编写的TF模型定义中为模型的输入层和输出层Tensor Variable分别指定名字(通过形参 ‘name’)

X = tf.placeholder(tf.float32, shape = […], name=‘input’)  //网络的输入
Y = tf.nn.softmax(tf.matmul(f, out_
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值