InternLM-llama3微调(进阶作业)

微调llama3 增强图片理解

#环境配置
conda create -n llama3 python=3.10
conda activate llama3
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia
cd ~
git clone -b v0.1.18 https://github.com/InternLM/XTuner
cd XTuner
pip install -e .[all]
cd ~
git clone https://github.com/SmartFlowAI/Llama3-Tutorial
#准备模型
#1 llama3模型
mkdir -p ~/model
cd ~/model
git lfs install
git clone https://code.openxlab.org.cn/MrCat/Llama-3-8B-Instruct.git Meta-Llama-3-8B-Instruct
#2准备 Llava 所需要的 openai/clip-vit-large-patch14-336,权重,即 Visual Encoder 权重
mkdir -p ~/model
cd ~/model
ln -s /root/share/new_models/openai/clip-vit-large-patch14-336 .
#3准备 Llava 将要用到的 Image Projector 部分权重
mkdir -p ~/model
cd ~/model
ln -s /root/share/new_models/xtuner/llama3-llava-iter_2181.pth .

Llama3-8B-Instruct 权重:这是核心的模型权重,负责处理文本数据和执行指令性任务。
Visual Encoder 权重(openai/clip-vit-large-patch14-336):用于图像理解,将图像转换成模型可以理解的表示。
Image Projector 权重:这个权重通常用于进一步处理从 Visual Encoder 得到的图像表示,使其更适合与文本数据进行融合和交互。

Image Projector
输入图像
图像向量
输入文本
文本Embedding模型
文本向量
L L M
输出文本

#准备数据
cd ~
git clone https://github.com/InternLM/tutorial -b camp2
python ~/tutorial/xtuner/llava/llava_data/repeat.py
-i ~/tutorial/xtuner/llava/llava_data/unique_data.json
-o ~/tutorial/xtuner/llava/llava_data/repeated_data.json
-n 200
#启动训练
xtuner train ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py --work-dir ~/llama3_llava_pth --deepspeed deepspeed_zero2
但是我出现了显卡不够的情况
在这里插入图片描述
把命令替换成xtuner train ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py --work-dir ~/llama3_llava_pth --deepspeed deepspeed_zero2_offload
区别在于:后者是显存不足,内存来补。 看到训练正常了
在这里插入图片描述
然后比较训练前和训练后

#训练前
export MKL_SERVICE_FORCE_INTEL=1
xtuner chat /root/model/Meta-Llama-3-8B-Instruct \
  --visual-encoder /root/model/clip-vit-large-patch14-336 \
  --llava /root/llama3_llava_pth/pretrain_iter_2181_hf \
  --prompt-template llama3_chat \
  --image /root/tutorial/xtuner/llava/llava_data/test_img/oph.jpg
#训练后
export MKL_SERVICE_FORCE_INTEL=1
xtuner chat /root/model/Meta-Llama-3-8B-Instruct \
  --visual-encoder /root/model/clip-vit-large-patch14-336 \
  --llava /root/llama3_llava_pth/iter_1200_hf \
  --prompt-template llama3_chat \
  --image /root/tutorial/xtuner/llava/llava_data/test_img/oph.jpg

可以看到在这里插入图片描述
在这里插入图片描述

### Chinese-LLaMA-Alpaca-3 技术文档和资源 #### 项目概述 Chinese-LLaMA-Alpaca-3 是基于Meta Llama 3发展而来的中文大模型三期项目,此项目为中文自然语言处理(NLP)领域带来了显著的进步,并为广大开发者和研究者提供了强大的工具和支持[^2]。 #### 主要特点和技术优势 该模型采用了先进的编码方式来高效且有效地表示中文文本,在多个方面进行了优化。这些改进使得模型能够更好地理解复杂的语义结构并生成高质量的回答[^1]。 #### 获取途径与安装指南 对于希望使用或进一步开发Chinese-LLaMA-Alpaca-3的研究人员来说,可以从官方GitCode仓库下载源码及相关预训练权重文件。具体操作可以参照项目的README.md文档中的说明进行环境配置以及模型加载。 ```bash # 克隆仓库至本地 git clone https://gitcode.com/gh_mirrors/ch/Chinese-LLaMA-Alpaca-3.git cd Chinese-LLaMA-Alpaca-3/ # 安装依赖项 pip install -r requirements.txt ``` #### 使用教程与案例分享 为了方便用户更快地上手这一强大工具,项目团队还准备了一系列详细的教程资料,涵盖了从基础概念介绍到实际应用场景等多个层面的内容。通过阅读这些材料,使用者可以获得关于如何充分利用本框架解决特定问题的第一手经验[^3]。 #### 社区支持与发展前景 作为一个活跃度极高的开源项目,Chinese-LLaMA-Alpaca-3背后有着庞大的社区作为支撑力量。无论是遇到技术难题寻求解答还是想要贡献自己的想法建议,都可以在这里找到志同道合的朋友一起交流探讨。随着越来越多的人参与到这个充满活力的群体当中,相信未来会有更多令人惊喜的应用成果不断涌现出来[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值