动态规划求解01背包问题,最长递增子序列

本文介绍了如何使用动态规划解决01背包问题,旨在最大化背包中物品的总价值。同时,文章也探讨了动态规划在寻找给定序列最长递增子序列中的应用。在实现过程中,特别指出了二维数组赋值的常见陷阱,并提供了正确创建二维数组的方法。
摘要由CSDN通过智能技术生成

01背包问题:给定N中物品和一个背包,物品i的重量是Wi,其价值位Vi,背包的容量为C。问应该如何选择装入背包的物品,使得转入背包的物品的总价值为最大?每件物品可以选择装或者不装。

i代表前i个物品(包括i),j表示背包重量,f(i, j)表示从前i个物品中选取到总重量不超过j的最大价值。

如果wi > j: f(i, j) = f(i-1, j) 否则f(i, j) = max(f(i-1, j), f(i-1, j-wi) +vi)。

假设山洞里共有a,b,c,d ,e这5件宝物(不是5种宝物),它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包, 怎么装背包,可以才能带走最多的财富。

def package_max_value(weight, value, package_volume):
    if len(weight) <= 0 or len(value) <= 0 or len(weight) != len(value):
        return []
    res = [[0 for i in range(package_volume)] for i in range(len(value))]
    for j in range(package_volume):
        if j < weight[0]:
            res[0][j] = 0
        else:
            res[0][j] = value[0]

    for i in range(1, len(value)):
        for j in range(package_volume
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值