单源最短路-求最大承重

Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo’s place) to crossing n (the customer’s place). You may assume that there is at least one path. All streets can be travelled in both directions.
Input
The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.
Output
The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input
1
3 3
1 2 3
1 3 4
2 3 5
Sample Output

Scenario #1:
4

题意:街道交叉口的数量n和街道数量m,每条街道都有一个最大承重量,现在要求1到n的最大承重量.
思路:意思就是找1-n的最大路的最小边,就是找到1-n的路,再求出分路上最小的一条边,并且这条边在所有的路径中是最大的

#include<stdio.h>
#include<string.h>
const int M=1010;
int inf=9999999;
int dis[M],map[M][M],book[M];//dis记录从1到i的承重,book标记用过的点,map作图
int n,m,max;
int min(int x,int y)
{
    if(x>y)
        x=y;
    return x;
}
void dj()
{
    int i,j,k,l;
    for(i=1;i<=n;i++)//初始化dis
        dis[i]=map[1][i];
    for(i=1;i<n;i++)//对1标记过了,所以循环次数减一
    {
        max=-inf;//求最大承重,max=-inf(相当于负无穷)
        for(j=1;j<=n;j++)
        {
            if(book[j]==0&&dis[j]>max)
            {
                max=dis[j];
                k=j;
            }
        }
        book[k]=1;//找到最大边并标记
        for(l=1;l<=n;l++)//找到分路中的最小承重然后大路承重比较,找到最大承重更新
        {
                if(dis[l]<min(dis[k],map[k][l]))
                    dis[l]=min(dis[k],map[k][l]);
        }
    }
}
int main()
{
    int t,s=0;
    scanf("%d",&t);
    while(t--)
    {
        s++;
        int i,j,k,l,a,b,c;
        memset(book,0,sizeof(book));
        memset(map,0,sizeof(map));
        scanf("%d %d",&n,&m);
        for(i=1;i<=n;i++)//map初始化
        {
            for(j=1;j<=n;j++)
            {
                if(i==j)
                    map[i][j]=0;
                else
                    map[i][j]=-inf;//使不存在的路为负无穷,防止影响求大路
            }
        }
        for(i=1;i<=m;i++)
        {
            scanf("%d %d %d",&a,&b,&c);
            if(map[a][b]<c)
            map[a][b]=c,map[b][a]=c;//双向路
        }
        book[1]=1;
        dj();
        printf("Scenario #%d:\n",s);
        printf("%d\n\n",dis[n]);//两次换行,否则格式错误
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值