Why So Serious?

——masikkk

排序:
默认
按更新时间
按访问量

OpenNI2获取华硕XtionProLive深度图和彩色图并用OpenCV显示

使用OpenNI2打开XtionProLive时有个问题,彩色图分辨率无论如何设置始终是320*240,深度图倒是可以设成640*480,而OpenNI1.x是可以获取640*480的彩色图的。 彩色图 配准到彩色图后的深度图 1:1融合图 代码: #include...

2014-07-02 15:41:10

阅读数:7186

评论数:0

OpenNI1.5获取华硕XtionProLive深度图和彩色图并用OpenCV显示

华硕XtionPro类似Kinect,都是体感摄像机,可捕捉深度图和彩色图,如图:

2014-07-02 11:46:14

阅读数:5631

评论数:0

mxArray数据类型

1 、数据类型mxArray的操作   在上节的Matlab引擎函数中,所有与变量有关的数据类型都是mxArray类型。数据结构mxArray以及大量的mx开头的函数,广泛用于Matlab 引擎程序和Matlab C数学库中。mxArray是一种很复杂的数据结构,与Matlab中的arra...

2014-05-20 16:49:21

阅读数:2005

评论数:0

Matlab以MEX方式调用C源代码

如果我有一个用C语言写的函数,实现了一个功能,如一个简单的函数: double add(double x, double y) { return x + y; }   现在我想要在Matlab中使用它,比如输入:   >> a = add(1.1, ...

2014-05-20 16:32:58

阅读数:1953

评论数:0

关于DPM(Deformable Part Model)算法中模型可视化的解释

DPM源码(voc-release)中的模型可视化做的还算相当炫酷的,可以让我们直观的看到训练好的模型,甚至我们不用去做模型的评价,直接根据肉眼的观察,就能大致了解一个目标训练的好不好,比如我训练一个人体模型,那他的可视化图当然就是越接近人体越好。

2014-05-16 18:58:14

阅读数:8486

评论数:7

关于DPM(Deformable Part Model)算法中模型结构的解释

含有n个部件的目标模型可以形式上定义为一个(n+2)元组:(F0,P1,..., Pn, b),F0是根滤波器,Pi是第i个部件的模型,b是表示偏差的实数值。每个部件模型用一个三元组定义:(Fi,vi, di),Fi是第i个部件的滤波器;vi是一个二维向量,指定第i个滤波器的锚点位置(anchor...

2014-05-16 15:56:14

阅读数:8987

评论数:14

用DPM(Deformable Part Model,voc-release3.1)算法在INRIA数据集上训练自己的人体检测模型

用DPM(Deformable Part Model,voc-release3.1)算法在INRIA数据集上训练自己的人体检测模型

2014-05-13 12:10:03

阅读数:12778

评论数:63

在windows下运行Felzenszwalb的Deformable Part Model(DPM)源码voc-release3.1来训练自己的模型

我的环境 DPM源码版本:voc-release3.1 VOC开发包版本:VOC2007_devkit_08-Jun 使用的训练数据集:VOC2007 Matlab版本:MatlabR2012b c++编译器:VS2010 系统:Win732位   (1) 修改globals.m中的一些全局变量 ...

2014-04-15 15:02:41

阅读数:18107

评论数:185

在Windows下运行Felzenszwalb的star-cascade DPM(Deformable Part Models)目标检测Matlab源码

可变形部件模型Deformable Part Models(DPM)是非常经典的目标检测算法,由Felzenszwalb提出,本文介绍如何在windows下运行Felzenszwalb给出的DPM算法的star-cascade版本voc-release4.01-star-cascade,相比于基本...

2014-03-06 22:18:42

阅读数:12190

评论数:38

利用RGB-D数据进行人体检测 People detection in RGB-D data

人体检测是机器人和智能系统中的重要问题。之前的研究工作使用摄像机和2D或3D测距器。本文中我们提出一种新的使用RGB-D的人体检测方法。我们从HOG( Histogram of OrientedGradients)描述子获得灵感,设计了一个在稠密深度数据中检测人体的方法,叫做深度方向直方图HOD(...

2014-02-21 21:35:20

阅读数:10884

评论数:10

使用判别训练的部件模型进行目标检测 Object Detection with Discriminatively Trained Part Based Models

本文介绍了一个基于混合多尺度可变形部件模型(mixtures of multiscale deformable part model)的目标检测系统。此系统可以表示各种多变的目标并且在PASCAL目标检测挑战赛上达到了目前最优结果(state-of-the-art)。虽然可变形部件模型现在很流行,...

2014-01-21 15:58:33

阅读数:33354

评论数:33

凸优化和非凸优化

数学中最优化问题的一般表述是求取,使,其中是n维向量,是的可行域,是上的实值函数。 凸优化问题是指是闭合的凸集且是上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非凸的最优化问题。 其中,是 凸集是指对集合中的任意两点,有,即任意两点的连线段都在集合内,直观上就是集合不会像下图那样有“凹下...

2014-01-07 11:47:34

阅读数:10730

评论数:0

在Windows下运行Felzenszwalb的Deformable Part Models(voc-release4.01)目标检测matlab源码

可变形部件模型Deformable Part Models是目前最好的目标检测算法,由Felzenszwalb提出,本文介绍如何在Windows下运行Felzenszwalb的Deformable Part Models(voc-release4.01)目标检测matlab源码

2013-12-26 09:59:59

阅读数:13322

评论数:33

有关可变形部件模型(Deformable Part Model)的一些说明

关于目标检测中的可变形部件模型(Deformable Part Model)的一些说明

2013-12-24 18:31:06

阅读数:16952

评论数:23

判别训练的多尺度可变形部件模型 A Discriminatively Trained, Multiscale, Deformable Part Model

本文介绍了一种用于目标检测的判别训练的多尺度可变形部件模型。我们的系统在平均精度上达到了2006 PASCAL 人体检测竞赛中最优结果的两倍,同样比2007 PASCAL目标检测比赛中20个类别中的10个的最优结果都要好。此系统非常依赖于可变形部件模型。随着可变形部件模型逐渐流行,它的价值并没有在...

2013-12-24 18:02:40

阅读数:17978

评论数:21

基于轮廓线索的实时人体检测 Real-Time Human Detection Using Contour Cues

本文提出了一种实时并且精准的人体检测架构C4。C4在目前最高精确度下可以达到20帧每秒的检测速度,并且是在只使用一个处理线程和不使用GPU等硬件的情况下达到的。能达到实时而精确的检测源于以下两点:第一,相邻像素差值的符号是描述轮廓的关键信息;第二,CENTRIST描述子非常适合做人体检测,因为它编...

2013-12-10 19:24:28

阅读数:12382

评论数:8

利用FinalData恢复shift+delete误删的文件

FinalData和之前找的几款软件所不同的地方在于,它不仅能恢复文件,还能查看文件损坏级别并进行受损恢复。

2013-12-05 10:06:01

阅读数:3889

评论数:1

用初次训练的SVM+HOG分类器在负样本原图上检测HardExample

难例(Hard Example)就是分错类的负样本,将难例加入负样本集合进行二次训练就是告诉分类器:“这些是你上次分错类的,要吸取教训,改正错误”

2013-11-14 10:35:26

阅读数:19116

评论数:26

自己训练SVM分类器进行HOG行人检测

正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体。 负样本是从不包含人体的图片中随机裁取的,大小同样是64*128。 SVM使用的是OpenCV自带的CvSVM类。 首先计算正负样本图像的HOG描述子,组成一个特征向量矩阵...

2013-11-13 22:51:37

阅读数:41992

评论数:194

从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本

进行行人检测的分类器训练时,负样本是从完全不包含人体的图片中随机剪裁出来的,下面程序的目的就是这个

2013-11-13 22:13:59

阅读数:8803

评论数:14

提示
确定要删除当前文章?
取消 删除
关闭
关闭