一文速学数模-评价模型(三)秩和比综合评价法(RSR)详解及Python实现和应用

秩和比综合评价法(RSR)是一种常用的统计分析方法,尤其在数学建模中。它适用于多指标综合评价,包括排序和分档。该方法对离群值不敏感,但可能会丢失原始数据信息。通过计算指标权重、编秩、计算RSR值等步骤实现。文章介绍了RSR法的优缺点、应用范围,并提供了Python实现的概述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、RSR秩和比综合评价法概述

二、设计思想

三、RSR的特点以及应用范围

1.优点

2.缺点

3.应用范围

四、实现步骤

1.指标权重计算

 2.编秩

1.整秩法

2.非整秩法

3.计算秩和比RSR值

4.绘制秩和比RSR分布表

 5.回归分析

 6.分档

参阅


前言

秩和比综合评价法是量化分析数学建模最常用的评价模型之一,在参与数学建模的一些比赛中出现过频数较多的评价系统或是政策影响因素等级排序等相关主题,该模型很够很好的建立评价系统,在多篇国赛美赛优秀论文中都出现过其身影。本篇博客的愿景是希望我或者读者通过阅读这篇博客能够学会RSR方法并能实际运用,而且能够记录到你的思想之中。当然个人不是数学专业对一些专业性的知识可能不是很了解,希望读者看完能够提出错误或者看法,博主会长期维护博客做及时更新。纯分享,希望大家喜欢。


一、RSR秩和比综合评价法概述

秩和比(Rank-sum ratio,RSR)法,它是一组全新的统计信息分析方法,是数量方法中一种广谱的方法,针对性强,操作简便,使用效果明显。非常适合于医学背景的广大用户。本法从理论上讲,融古典的参数统计与近代的非参数统计于一体,兼及描述性与推断性。该法经过二十余

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值