NBA球队实力聚类分析

NBA球队实力聚类分析

导入模块

from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import MinMaxScaler

读取数据

data = pd.read_csv('nba .csv')
data.head()

在这里插入图片描述

数据标准化

minmax_scaler = MinMaxScaler()
# 标准化数据
X = minmax_scaler.fit_transform(data.iloc[:,1:])
X[:5]

在这里插入图片描述

肘部法则

# 肘部法则
loss = []
for i in range(2,10):
    model = KMeans(n_clusters=i).fit(X)
    loss.append(model.inertia_)
    
plt.plot(range(2,10),loss)
plt.xlabel('k')
plt.ylabel('loss')
plt.show()

在这里插入图片描述

选择最佳聚类效果

k = 4
model = KMeans(n_clusters=k).fit(X)

# 将标签整合到原始数据上
data['clusters'] = model.labels_

data.head()

在这里插入图片描述

打印四个类别

for i in range(k):
    print('clusters:',i)
    label_data = data[data['clusters'] == i].iloc[:,0]
    print(label_data.values)

在这里插入图片描述

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值