DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!
ContextualFusion: Context-Based Multi-Sensor Fusion for 3D Object Detection in Adverse Operating Conditions
引言:自动驾驶车辆在恶劣环境中的挑战
自动驾驶车辆(AV)设计目的是在几乎不需要人类干预的情况下,在真实世界的场景中自行驾驶。这些车辆通常配备有多种传感器,包括摄像头、激光雷达、雷达、超声波传感器、GPS和IMU。由于自动驾驶技术有望使交通更安全,因此这一领域的研究非常受欢迎。例如Waymo和GM Cruise等公司已经开始在限定区域部署自动驾驶出租车队,主要是在天气良好的条件下。然而,自动驾驶系统要实现这一目标,必须可靠地感知其运行环境。全自动AV必须能够在水平视场360度范围内、垂直视场±15-20度范围内看到,没有任何盲点。
在本文中,我们专注于在恶劣条件下融合摄像头图像和激光雷达点云。摄像头提供丰富的像素级信息,但可能会被直射阳光照射而失效,并且在夜间和低光照条件下性能显著下降。激光雷达作为主动传感器提供3D信息,在白天和夜间条件下均能良好工作。然而,激光雷达的光束也可能被大雨和雾散射,导致物体检测出现误报。最近的研究表明,使用多模态深度学习模型融合传感器数据通常能有效提高感知性能。
论文标题、机构、论文链接和项目地址
论文标题: ContextualFusion: Context-Based Multi-Sensor Fusion for 3D Object Detection in Adverse Operating Conditions
机构: Shounak Sural1, Nishad Sahu1 and Ragunathan (Raj) Rajkumar1
论文链接: