小树也能读懂的唯一因子分解整环

算术基本定理

打小学起,我们就知道正整数有一些基本单元叫做素数,它们除了1和自身外没有其他的因子。除了1之外的数,如果不是素数,就叫做合数,合数可以分解成素数的乘积,比如, 12 = 2 × 2 × 3 12=2\times 2\times 3 12=2×2×3。而且,这种分解是唯一确定的。那时候,我们不会思考为什么这种分解是存在的,更不会思考为什么这种分解是唯一的。我们把老师和课本当成是权威,所说所写都是真理。稍微勤快点的孩子,动手写了几个例子,发现也确实是对的。那时候,一切只需要陈述和应用,证明看起来是那么高不可攀。

现在我们来看看怎么证明吧。给一个大于1的正整数,如果不是素数,就可以分解成两个更小的数的乘积,如果这两个数也不是素数,就又可以分解成比自身更小的数的乘积。这个过程是不会无限进行下去的,我们不会一直都能取到更小的数(这个是由于自然数的良序性)。于是到了有限步之后,最初给的数就写成了有限个素数的乘积。

到目前为止,我们还不需要减法和负数。但是到了唯一性证明的时候,引入减法和负数就是必要的了。(这个并不绝对,但是会使证明更加简洁。不引入减法和负数,使用数学归纳法也是可以解决这个问题的。)首先,我们断言:一个素数 p p p如果整数两个正数的乘积 a b ab ab,那么它必定整除其中某个正数。这个依赖于带余除法。假设 p ∤ a , b p\nmid a,b pa,b,则存在 u , v , s , t ∈ Z u,v,s,t\in \mathbb{Z} u,v,s,tZ,使得 u p + v a = 1 up+va=1 up+va=1 s p + t b = 1 sp+tb=1 sp+tb=1,两式相乘得到
( u s p + u t b + v s a ) p + v t a b = 1 (usp+utb+vsa)p+vtab=1 (usp+utb+vsa)p+vtab=1

从而 p ∤ a b p\nmid ab pab。这样就证明了断言。引入逆运算,对系统进行自然的扩充,会使论证过程变得更加自然。 根据这个断言,如果有两个分解式 c = p 1 p 2 ⋯ p m = q 1 q 2 ⋯ q n c=p_1p_2\cdots p_m=q_1q_2\cdots q_n c=p1p2pm=q1q2qn,则必有 p 1 ∣ q n ( 1 ) p_1|q_{n(1)} p1qn(1),因为 q n ( 1 ) q_{n(1)} qn(1)也是素数,所以就得到 p 1 = q n ( 1 ) p_1=q_{n(1)} p1=qn(1),再用消去律(整数环是整环),就可以归纳下去完成证明。

上面这部分实际上说明了:整数环 Z \mathbb{Z} Z是唯一因子分解整环。

完全类似地,可以说明域上的多项式环 k [ x ] k[x] k[x]也是唯一因子分解整环。

整系数多项式

其实整系数多项式环 Z [ x ] \mathbb{Z}[x] Z[x]也是唯一因子分解整环。它没有带余除法,但是它距离带余除法仅仅只有一步之遥——考虑有理数域上的多项式环 Q [ x ] \mathbb{Q}[x] Q[x]。毕竟除法可以做就意味着首项可以消。

给一个整系数多项式 f f f,如果看成是有理系数多项式,就可以分解为一些 Q [ x ] \mathbb{Q}[x] Q[x]上的不可约多项式的乘积 f = f 1 ⋯ f n f=f_1\cdots f_n f=f1fn。下面考虑怎么回去。我们引入本原多项式的概念。 Z [ x ] \mathbb{Z}[x] Z[x]上的多项式如果各项系数的最大公约数为1,则称此多项式是本原多项式。对于一个正次数有理系数多项式 g g g,在相差一个正负号的前提下可以唯一确定一个本原多项式 g 0 g_0 g0使得 g = q g 0 g=qg_0 g=qg0,其中 q q q为有理数。 c d g 0 = c ′ d ′ g 0 ′ ⇒ c d ′ g 0 = c ′ d g 0 ′ ⇒ c d ′ = ± c ′ d ⇒ g 0 = ± g 0 ′ \frac{c}{d}g_0=\frac{c^\prime}{d^\prime}g_0^\prime\Rightarrow cd^\prime g_0=c^\prime dg_0^\prime\Rightarrow cd^\prime=\pm c^\prime d\Rightarrow g_0=\pm g_0^\prime dcg0=dcg0cdg0=cdg0cd=±cdg0=±g0。由此,我们就可以得到
f = q 1 g 1 ⋯ q n g n = q 1 ⋯ q n g 1 ⋯ g n . f=q_1g_1\cdots q_ng_n=q_1\cdots q_ng_1\cdots g_n. f=q1g1qngn=q1qng1gn.

下面的问题在于说明前面的系数是整数。我们断言:本原多项式的乘积还是本原多项式。这里我们会看到引入商同态是必要的。设 g , h ∈ Z [ x ] g,h\in \mathbb{Z}[x] g,hZ[x]均为本原多项式,假设 g h gh gh不是本原多项式,则存在素数 p p p整除所有系数。通过商同态 Z [ x ] → Z p [ x ] \mathbb{Z}[x]\rightarrow\mathbb{Z}_p[x] Z[x]Zp[x],我们得到 g ˉ h ˉ = g h ‾ = 0 ∈ Z p [ x ] \bar g\bar h=\overline{gh}=0\in \mathbb{Z}_p[x] gˉhˉ=gh=0Zp[x]。因为 Z p [ x ] \mathbb{Z}_p[x] Zp[x]是整环,所以必定有 g ˉ = 0 \bar g=0 gˉ=0或者 h ˉ = 0 \bar h=0 hˉ=0,也就是说 p p p会整除其中一个多项式的所有系数,矛盾。当然,我们也可以直接论证。但是,正是引入了保持运算的映射,使得理解过程变得本质而自然。从这个地方,就可以意识到,不仅仅要将集合作为一个基本概念,而且还要把集合之间保持运算的映射(一般称为态射)作为基本的概念。把代数系统和态射放在一起构成范畴,这样考虑问题就更加自然。 f = c d g 1 ⋯ g n ⇒ d f = c g 1 ⋯ g n ⇒ d d ′ f 0 = c g 1 ⋯ g n f=\frac{c}{d}g_1\cdots g_n\Rightarrow df=cg_1\cdots g_n\Rightarrow dd^\prime f_0=cg_1\cdots g_n f=dcg1gndf=cg1gnddf0=cg1gn。由于本原多项式的乘积还是本原多项式,所以 f 0 = ± g 1 ⋯ g n f_0=\pm g_1\cdots g_n f0=±g1gn c = ± d d ′ c=\pm dd^\prime c=±dd

于是分解式的存在性就迎刃而解。再看分解的唯一性。这部分就比较简单了,直接放到 Q [ x ] \mathbb{Q}[x] Q[x]中去看就能够得出来。

抽象一下

上面的结果可以进行抽象下。其实,任何唯一分解整环上的多项式环都是唯一分解整环。证明的过程和 Z [ x ] \mathbb{Z}[x] Z[x]的证明过程基本类似。

说点其他的……

上面说明了一些常见的对象是唯一因子分解整环,于是理解这个对象的主要工作就在某种意义上归结为理解不可约元。然而,我们对不可约元的理解其实是很少的。在整数环中,对素数的理解占据了数论研究的半壁江山:寻找大素数,素数的判断,素数的表达式,素数的分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值