算术基本定理
打小学起,我们就知道正整数有一些基本单元叫做素数,它们除了1和自身外没有其他的因子。除了1之外的数,如果不是素数,就叫做合数,合数可以分解成素数的乘积,比如, 12 = 2 × 2 × 3 12=2\times 2\times 3 12=2×2×3。而且,这种分解是唯一确定的。那时候,我们不会思考为什么这种分解是存在的,更不会思考为什么这种分解是唯一的。我们把老师和课本当成是权威,所说所写都是真理。稍微勤快点的孩子,动手写了几个例子,发现也确实是对的。那时候,一切只需要陈述和应用,证明看起来是那么高不可攀。
现在我们来看看怎么证明吧。给一个大于1的正整数,如果不是素数,就可以分解成两个更小的数的乘积,如果这两个数也不是素数,就又可以分解成比自身更小的数的乘积。这个过程是不会无限进行下去的,我们不会一直都能取到更小的数(这个是由于自然数的良序性)。于是到了有限步之后,最初给的数就写成了有限个素数的乘积。
到目前为止,我们还不需要减法和负数。但是到了唯一性证明的时候,引入减法和负数就是必要的了。(这个并不绝对,但是会使证明更加简洁。不引入减法和负数,使用数学归纳法也是可以解决这个问题的。)首先,我们断言:一个素数
p
p
p如果整数两个正数的乘积
a
b
ab
ab,那么它必定整除其中某个正数。这个依赖于带余除法。假设
p
∤
a
,
b
p\nmid a,b
p∤a,b,则存在
u
,
v
,
s
,
t
∈
Z
u,v,s,t\in \mathbb{Z}
u,v,s,t∈Z,使得
u
p
+
v
a
=
1
up+va=1
up+va=1,
s
p
+
t
b
=
1
sp+tb=1
sp+tb=1,两式相乘得到
(
u
s
p
+
u
t
b
+
v
s
a
)
p
+
v
t
a
b
=
1
(usp+utb+vsa)p+vtab=1
(usp+utb+vsa)p+vtab=1
从而 p ∤ a b p\nmid ab p∤ab。这样就证明了断言。引入逆运算,对系统进行自然的扩充,会使论证过程变得更加自然。 根据这个断言,如果有两个分解式 c = p 1 p 2 ⋯ p m = q 1 q 2 ⋯ q n c=p_1p_2\cdots p_m=q_1q_2\cdots q_n c=p1p2⋯pm=q1q2⋯qn,则必有 p 1 ∣ q n ( 1 ) p_1|q_{n(1)} p1∣qn(1),因为 q n ( 1 ) q_{n(1)} qn(1)也是素数,所以就得到 p 1 = q n ( 1 ) p_1=q_{n(1)} p1=qn(1),再用消去律(整数环是整环),就可以归纳下去完成证明。
上面这部分实际上说明了:整数环 Z \mathbb{Z} Z是唯一因子分解整环。
完全类似地,可以说明域上的多项式环 k [ x ] k[x] k[x]也是唯一因子分解整环。
整系数多项式
其实整系数多项式环 Z [ x ] \mathbb{Z}[x] Z[x]也是唯一因子分解整环。它没有带余除法,但是它距离带余除法仅仅只有一步之遥——考虑有理数域上的多项式环 Q [ x ] \mathbb{Q}[x] Q[x]。毕竟除法可以做就意味着首项可以消。
给一个整系数多项式
f
f
f,如果看成是有理系数多项式,就可以分解为一些
Q
[
x
]
\mathbb{Q}[x]
Q[x]上的不可约多项式的乘积
f
=
f
1
⋯
f
n
f=f_1\cdots f_n
f=f1⋯fn。下面考虑怎么回去。我们引入本原多项式的概念。
Z
[
x
]
\mathbb{Z}[x]
Z[x]上的多项式如果各项系数的最大公约数为1,则称此多项式是本原多项式。对于一个正次数有理系数多项式
g
g
g,在相差一个正负号的前提下可以唯一确定一个本原多项式
g
0
g_0
g0使得
g
=
q
g
0
g=qg_0
g=qg0,其中
q
q
q为有理数。
c
d
g
0
=
c
′
d
′
g
0
′
⇒
c
d
′
g
0
=
c
′
d
g
0
′
⇒
c
d
′
=
±
c
′
d
⇒
g
0
=
±
g
0
′
\frac{c}{d}g_0=\frac{c^\prime}{d^\prime}g_0^\prime\Rightarrow cd^\prime g_0=c^\prime dg_0^\prime\Rightarrow cd^\prime=\pm c^\prime d\Rightarrow g_0=\pm g_0^\prime
dcg0=d′c′g0′⇒cd′g0=c′dg0′⇒cd′=±c′d⇒g0=±g0′。由此,我们就可以得到
f
=
q
1
g
1
⋯
q
n
g
n
=
q
1
⋯
q
n
g
1
⋯
g
n
.
f=q_1g_1\cdots q_ng_n=q_1\cdots q_ng_1\cdots g_n.
f=q1g1⋯qngn=q1⋯qng1⋯gn.
下面的问题在于说明前面的系数是整数。我们断言:本原多项式的乘积还是本原多项式。这里我们会看到引入商同态是必要的。设 g , h ∈ Z [ x ] g,h\in \mathbb{Z}[x] g,h∈Z[x]均为本原多项式,假设 g h gh gh不是本原多项式,则存在素数 p p p整除所有系数。通过商同态 Z [ x ] → Z p [ x ] \mathbb{Z}[x]\rightarrow\mathbb{Z}_p[x] Z[x]→Zp[x],我们得到 g ˉ h ˉ = g h ‾ = 0 ∈ Z p [ x ] \bar g\bar h=\overline{gh}=0\in \mathbb{Z}_p[x] gˉhˉ=gh=0∈Zp[x]。因为 Z p [ x ] \mathbb{Z}_p[x] Zp[x]是整环,所以必定有 g ˉ = 0 \bar g=0 gˉ=0或者 h ˉ = 0 \bar h=0 hˉ=0,也就是说 p p p会整除其中一个多项式的所有系数,矛盾。当然,我们也可以直接论证。但是,正是引入了保持运算的映射,使得理解过程变得本质而自然。从这个地方,就可以意识到,不仅仅要将集合作为一个基本概念,而且还要把集合之间保持运算的映射(一般称为态射)作为基本的概念。把代数系统和态射放在一起构成范畴,这样考虑问题就更加自然。 f = c d g 1 ⋯ g n ⇒ d f = c g 1 ⋯ g n ⇒ d d ′ f 0 = c g 1 ⋯ g n f=\frac{c}{d}g_1\cdots g_n\Rightarrow df=cg_1\cdots g_n\Rightarrow dd^\prime f_0=cg_1\cdots g_n f=dcg1⋯gn⇒df=cg1⋯gn⇒dd′f0=cg1⋯gn。由于本原多项式的乘积还是本原多项式,所以 f 0 = ± g 1 ⋯ g n f_0=\pm g_1\cdots g_n f0=±g1⋯gn, c = ± d d ′ c=\pm dd^\prime c=±dd′。
于是分解式的存在性就迎刃而解。再看分解的唯一性。这部分就比较简单了,直接放到 Q [ x ] \mathbb{Q}[x] Q[x]中去看就能够得出来。
抽象一下
上面的结果可以进行抽象下。其实,任何唯一分解整环上的多项式环都是唯一分解整环。证明的过程和 Z [ x ] \mathbb{Z}[x] Z[x]的证明过程基本类似。
说点其他的……
上面说明了一些常见的对象是唯一因子分解整环,于是理解这个对象的主要工作就在某种意义上归结为理解不可约元。然而,我们对不可约元的理解其实是很少的。在整数环中,对素数的理解占据了数论研究的半壁江山:寻找大素数,素数的判断,素数的表达式,素数的分布。