小树也能读懂的希尔伯特基定理

从带余除法说起

打小学起,我们就开始接触整数,知道1+1=2,知道加减乘除。可是,整数除以整数一般是整除不下来的,比如 7 ÷ 2 = 3 ⋯ ⋯ 1 7\div 2=3\cdots\cdots 1 7÷2=31。 这个式子用乘法来写就是 7 = 3 × 2 + 1 7=3\times 2+1 7=3×2+1。我们用符号来表达, a a a表示被除数, b b b表示除数, q q q表示商, r r r表示余数,则有
a = q b + r . a=qb+r. a=qb+r.

这里,我们约定下 b > 0 b>0 b>0,带余除法可以保证 0 ≤ r < b 0\leq r< b 0r<b

通过带余除法可以得到什么结论呢?我们知道两个整数会有最大公约数,这个最大公约数其实就是由带余除法推导出来的。我们求得最大公约数的经典算法,也就是辗转相除法,是以带余除法为基础的。这个事情是很神奇的。它实际上告诉我们,两个数 a , b a,b a,b能够构成所有组合 I = { r a + s b ∣ r , s ∈ Z } I=\{ra+sb|r,s\in \mathbb{Z}\} I={ra+sbr,sZ}(简记为 I = Z a + Z b I=\mathbb{Z}a+\mathbb{Z}b I=Za+Zb)可以通过一个数——它们的最大公约数 m = ( a , b ) m=(a,b) m=(a,b)——的组合来表达,即
I = { k m ∣ k ∈ Z } . I=\{km|k\in \mathbb{Z}\}. I={kmkZ}.

用简单的符号记录下来就是, Z a + Z b = Z ( a , b ) \mathbb{Z}a+\mathbb{Z}b=\mathbb{Z}(a,b) Za+Zb=Z(a,b)。再考虑多个数,就可以得到 Z a 1 + Z a 2 + ⋯ + Z a n = Z ( a 1 , a 2 , ⋯   , a n ) \mathbb{Z}a_1+\mathbb{Z}a_2+\cdots+\mathbb{Z}a_n=\mathbb{Z}(a_1,a_2,\cdots,a_n) Za1+Za2++Zan=Z(a1,a2,,an)。如果再进一步,考虑无限多个数中任意有限个数的组合呢?也就是,给定一个非空集合(可以是无限集) S S S,考虑 I = { r 1 a 1 + ⋯ + r l a l ∣ l > 0 , a i ∈ S , r i ∈ Z } I=\{r_1a_1+\cdots+r_la_l|l>0,a_i\in S,r_i\in\mathbb{Z}\} I={r1a1++rlall>0,aiS,riZ}。那么,这个集合会不会也可以表示成 Z a \mathbb{Z}a Za的形式呢?假设可以的话,因为对称性,可以设 a ≥ 0 a\geq 0 a0,并且 a = 0 a=0 a=0的话只能是 I = { 0 } I=\{0\} I={0},这个没什么好说的,我们假定下 I I I中含有非零数。因为任意的非0整数 k k k a ≤ ∣ k a ∣ a\leq |ka| aka,所以, a a a应该是 I I I中最小的正数。根据自然数集的良序性,这个最小的正数是唯一确定的。那我们就取 a a a为这个数。下面看看 I I I中的数是否都可以写成 a a a的倍数。

I I I中任意一个数出来,记为 c c c。根据带余除法 c = q a + r c=qa+r c=qa+r并且 0 ≤ r < a 0\leq r<a 0r<a。如果 r ≠ 0 r\neq 0 r=0,那么 r = c − q a ∈ I r=c-qa\in I r=cqaI I I I中比 a a a更小的正数,就矛盾了。因此 c = q a c=qa c=qa。由此,也就得到 I = Z a I=\mathbb{Z}a I=Za

我们总结下上面得到的结论:根据整数的带余除法,我们可以知道,给定任意多个整数,它们的整系数组合都可以表示成一个确定的整数的倍数,这个确定的整数与具体的整数组合无关,只与给定的任意多个整数有关。

有这个结果,又能得到什么结论呢?

多项式的故事

到了中学的时候,我们就开始接触多项式了。对这个东西,最经典的问题就是解多项式方程。一次多项式方程就是 a x + b = 0 ax+b=0 ax+b=0,二次多项式方程就是 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0,更高次的多项式方程中学基本不会过多讨论了。从古希腊开始,人们就在想,是不是任意次数的多项式方程都可以使用加减乘除和根号把根表达出来。二次的时候我们学会求根公式,后来三次、四次的求根公式都被发现了。五次以上呢?不知道,既不知道一般的求根公式,也不知道是不是没有求根公式。后来在19世纪,阿贝尔证明了五次以上的一般多项式方程没有求根公式。于是,人们就想知道,一个具体的多项式方程是否会有求根公式。也是在19世纪,伽罗瓦回答了这个问题,参见伽罗瓦理论系列

对于多项式,我们同样可以考虑一些其他的问题。比如,上面关于整数的结论还会成立吗?

通过上面的解析,我们知道问题的关键是带余除法。对于多项式,我们其实也有带余除法,不过这个时候不是比较大小,而是比较次数。给定非零多项式 g g g,对于任意多项式 f f f,存在等式
f = q g + r f=qg+r f=qg+r

并且满足 r = 0 r=0 r=0或者 d e g   r < d e g   g deg\ r<deg\ g deg r<deg g

注意,带余除法成立的前提是多项式的系数可以取一个数域(数域是那种对加减乘除都可以进行运算的数集)上的任何元素,如果仅仅考虑整数系数的多项式就没有带余除法了。为什么呢?我们看一个例子 f = x , g = 2 f=x,g=2 f=x,g=2。如果有 x = 2 q + r x=2q+r x=2q+r其中 r ≠ 0 r\neq 0 r=0为整数,假设 r r r为奇数,则 x x x取值为偶数时,这个等式肯定不成立,假设 r r r为偶数,同样会有矛盾。因此 f = q g + r f=qg+r f=qg+r是不会有的。究其根源,在于无法消去 f f f的首项。

整系数多项式

前面我们看到当只考虑系数为整数的多项式时,就没有带余除法了,而且无法用一个元素来表达所有组合了。这个时候我们可以要求什么呢?如果可以用有限个元素来表达所有组合也是不错的结果。我们记整系数多项式为 Z [ x ] \mathbb{Z}[x] Z[x]

考虑由非空子集 S S S张成的所有整多项式系数组合 J = { r 1 a 1 + ⋯ + r l a l ∣ l > 0 , a i ∈ S , r i ∈ Z [ x ] } J=\{r_1a_1+\cdots+r_la_l|l>0,a_i\in S,r_i\in\mathbb{Z}[x]\} J={r1a1++rlall>0,aiS,riZ[x]}。我们希望在 J J J中找到有限个多项式 b 1 , ⋯   , b t b_1,\cdots,b_t b1,,bt使得 J = Z [ x ] b 1 + ⋯ + Z [ x ] b t J=\mathbb{Z}[x]b_1+\cdots+\mathbb{Z}[x]b_t J=Z[x]b1++Z[x]bt

不像整数情形可以考虑最小正数,或者多项式情形可以考虑最小次数多项式,来确定生成元,此时生成元没有那么好的性质。(说得我自己也不那么相信。)但是,我们还是可以把握一个原则:借助运算消首项。给定 f ∈ J f\in J fJ,考虑首项系数 a ∈ Z a\in \mathbb{Z} aZ。如果把 J J J中所有多项式的首项系数拿出来放在一起,构成 Z \mathbb{Z} Z的一个非空子集 I I I,则 I I I具有以下性质(*):
a ∈ Z , b ∈ I ⇒ a b ∈ I , a , b ∈ I ⇒ a + b ∈ I . a\in \mathbb{Z}, b\in I\Rightarrow ab\in I,a,b\in I\Rightarrow a+b\in I. aZ,bIabI,a,bIa+bI.

于是, I I I可以看成是 I I I中元素的整系数组合全体。根据第一节,我们有 I = Z c I=\mathbb{Z}c I=Zc。这里假设 c c c是多项式 g g g的首项系数,由于 a = q c a=qc a=qc,如果 d e g   f ≥ d e g   g deg\ f\geq deg\ g deg fdeg g,那么 f − q x d e g   f − d e g   g g f-qx^{deg\ f-deg\ g}g fqxdeg fdeg gg的次数就小于 d e g   f deg\ f deg f,并且这个多项式也在 J J J中,从而达到了消首项的目的。只要 f f f满足 d e g   f ≥ d e g   g deg\ f\geq deg\ g deg fdeg g就可以不断消首项,使得最后得到的多项式次数小于 d e g   g deg\ g deg g。即,存在 p ∈ Z [ x ] p\in \mathbb{Z}[x] pZ[x]使得 d e g   ( f − p g ) < d e g   g deg\ (f-pg)< deg\ g deg (fpg)<deg g。因此,我们只需要再考虑这些低次多项式就可以了。

r = d e g   g r=deg\ g r=deg g。考虑 J J J中次数为 r − 1 r-1 r1的多项式全体 J r − 1 J_{r-1} Jr1,取出它们的首项系数,加入0之后,得到的集合记为 I r − 1 I_{r-1} Ir1,容易验证它也满足性质(*)。从而可以找到 c r − 1 c_{r-1} cr1使得 I r − 1 = Z c r − 1 I_{r-1}=\mathbb{Z}c_{r-1} Ir1=Zcr1。又一次,我们又可以消首项了。设 g r − 1 g_{r-1} gr1的首项系数为 c r − 1 c_{r-1} cr1,则对任意 f ∈ J r − 1 f\in J_{r-1} fJr1有整数 q r − 1 q_{r-1} qr1使得 d e g ( f − q r − 1 g r − 1 ) < r − 1 deg (f-q_{r-1}g_{r-1})< r-1 deg(fqr1gr1)<r1。接着我们考虑次数为 r − 2 r-2 r2的多项式全体 J r − 2 J_{r-2} Jr2,依次不断降次,最后必然到达0。

综上,任何 J J J中多项式都可以表示成 g , g r − 1 , g r − 2 , ⋯   , g 1 , g 0 g,g_{r-1},g_{r-2},\cdots,g_1,g_0 g,gr1,gr2,,g1,g0的组合,即
J = Z [ x ] g + Z [ x ] g r − 1 + ⋯ + Z [ x ] g 0 . J=\mathbb{Z}[x]g+\mathbb{Z}[x]g_{r-1}+\cdots+\mathbb{Z}[x]g_0. J=Z[x]g+Z[x]gr1++Z[x]g0.

更多的……

如果我们完全脱离具体的数或者多项式,仅仅考虑满足某些性质的集合,从整系数多项式的探讨中我们可以得到什么呢?富有洞察力的你也许会知道接下来要做什么了,就是抽象啊。

如果 R R R是一个具有两种运算的非空集合,一种叫加法,一种叫乘法,满足类似于整数集合的那些性质:具有 1 1 1 0 0 0,加法交换律,加法结合律,有负元,乘法交换律,乘法结合律,乘法对加法的分配律。再进一步,如果对于 R R R中满足性质(*)的非空子集 I I I,我们总可以找到有限个元素 a 1 , ⋯   , a n a_1,\cdots,a_n a1,,an使得 I = R a 1 + ⋯ + R a n I=Ra_1+\cdots+Ra_n I=Ra1++Ran,我们就称 R R R是Noether环(诺特环)。

前两节,我们实际上说明了整数全体 Z \mathbb{Z} Z和域上的多项式全体 k [ x ] k[x] k[x]是Noether环。第三节说明了整系数多项式全体 Z [ x ] \mathbb{Z}[x] Z[x]也是Noether环。其实,第三节,进一步告诉我们下面更加抽象的结果:

如果 R R R是Noether环,那么以 R R R为系数的多项式全体 R [ x ] R[x] R[x]也是Noether环。

这就是题目所说的Hilbert基定理(希尔伯特基定理)。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值