在桌面上放有M张扑克牌,甲乙双方依照下列的给则从桌面上拿取扑克牌:
(1)第一个从桌面上拿取扑克牌的人字次拿取数目只能少于M张
(2)然后另一方从桌面上拿取,但不能多于前一个人取数的两倍;
(3)轮流交换取牌,每次取牌数不得多于对方最后一次刚取过牌数目的两倍。直到有一人最先把桌面上的扑克牌取完。这个人获胜。
请设计两方的取牌策略。
——————————————————————————————————————————
若所有牌的数目是个斐波那契数的话,那么后取的一方稳操胜券,
若所有牌的数目不是斐波那契数的话,那么先取的一方稳操胜券。
证明:
首先说明斐波那挈数列F(n)=F(n-1)+F(n-2):1,1,2,3,5,8,...
一、牌数为斐波那契数时,谁先拿,谁输。
证明:归纳法!
1.F(3) = 2; 两张牌时,先拿的人必输。
F(4) = 3; 三张牌时,先拿的人必输。
2.假设 n<=k时,命题成立,即牌数为斐波那挈数列中前k个数时,都是先拿的人必输。
3.那么 n=k+1时,因为F(k+1)=F(k)+F(k-1)