✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
“板凳龙”,是起源于我国河洛地区的一种传统民俗活动,是我国南方许多省市的元宵庆祝活动之一,有丰富的文化内涵。本文主要分析了舞龙过程,研究舞龙路径、龙头速度等参数对舞龙过程的影响,建立了基于刚体限制的舞龙队模型,并利用变步长搜索、二分法、模拟退火等方法进行求解。
针对问题一:我们建立了舞龙队位置速度模型。首先,引入阿基米德螺线,以螺线起点为原点建立极坐标系,得到螺线方程为 r(θ) = bθ。以盘入瞬间为时间原点,建立时间 t 与龙头前把手极角 θ0 之间的函数关系,以此求出龙头前把手的位置,并利用刚体限制,将变步长搜索与二分法结合,计算出所有把手的位置。然后,计算各把手所在位置的切线方向和各板凳方向,由刚体限制推导出速度计算公式,最终得到所有把手的位置和速度结果。结果详见表 2 、表 3 和文件 result1.xlsx。
针对问题二:证明了只需考虑第一、二块板凳是否与其他板凳发生碰撞,我们建立了舞龙队碰撞检测模型和两种最小螺距计算模型,结合变步长搜索和二分法,求解舞龙队盘入的终止时刻。在问题一的基础上,先确定所有板凳的位置信息,然后基于舞龙队碰撞检测模型,用变步长搜索对时间进行两轮迭代,将第一次碰撞时间锁定在较精确的小区间内,以确保没有漏过某次碰撞,且此区间不会出现其它碰撞情况。最后,借助二分法,求出终止时刻的精确值。得到碰撞时间为 412.473838 s,其它计算结果详见文件result2.xlsx。
针对问题三:在问题二的基础上,建立了螺距参数可调的舞龙队碰撞检测模型。问题三的本质与问题二相同,只是螺距参数可调,以便于对不同螺距下的舞龙队进行碰撞检测。只需要改变螺距的值,求解出碰撞时刻的极径长度,与调头空间半径作对比,即可得到最终结果。考虑到时间坐标离散带来的误差影响,在实际解题过程中,我们采用了两种不同的做法:二分法、模拟退火法进行求解,两种方法得到的最小螺距分别为0.450337 m 和 0.450297 m。
针对问题四:建立调头位置可变的全路径舞龙队位置速度模型,并求解出满足刚体限制的最小调头半径为 4.254674 m 。为了保持精度的同时简便计算,规定实际调头路径起始点和终止点呈中心对称,由此可证调头路线形状唯一确定,随后根据调头路线形状,确定了全路径在直角坐标系下的参数方程,并在编程过程中对不同把手所处不同曲线进行区分,最终得出所需时间段内各把手的位置速度信息,计算结果详见文件result4.xlsx。
针对问题五:在问题四中模型的基础上,考虑速度大小限制条件,对龙头行进速度进行递减迭代,最终求得满足速度限制的最大龙头行进速度为 0.409122 m · s−1。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
); % 计算 r = a + b*theta 的参数 b
t_crushed = GetCrushedTime(b, d, v_0, t_range, t_step1, t_step2, t_error_max_abs);
theta_0 = 16*2*pi - func_find_start(b, 16*2*pi, v_0*t_crushed);
coordinates = b*theta_0.*[cos(theta_0), sin(theta_0)];
dist = sqrt(sum(coordinates.^2));
%disp(['luoju = ', num2str(luoju), ', t_crushed = ', num2str(t_crushed), ', theta_0 = ', num2str(theta_0) ', distance = ', num2str(dist) ])
%DrawPointsAndRectangles(GetAllPoints(theta_0 , b, d , 10^(-12)), b);
end
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇