【信号去噪】基于麻雀算法优化VMD信号去噪(目标函数为包络熵局部极小值)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

然后计算每个麻雀位置下的平均包网络密度;更新最小平均包网络密度,即获得当前群体中最佳个人体的位置更新前麻雀个体的空间位置;输出最佳麻雀个体的位置方向,即得VMD的解析参数组合;根据所得到的分析参数组合对信号进行VMD分析,将分出IMF分量相加到重组信号,即得去后的信号.本发明解决了现在有技术存在的原始VMD算法的解析参数需要根据经验进行人员确定,导致无法得到最佳解析结果,从而影响信号的去有效的问题。以西储大学数据集为例,选用105.mat中的X105_BA_time.mat数据。首先进行VMD分解,采用麻雀优化算法(SSA)对VMD的两个关键参数(惩罚因子α和模态分解数K)进行优化,以最小包络熵为适应度值。其他智能优化算法同样适用,关键要学会最小包络熵代码的编写,实验过程中,会实时显示每次寻优后的最小包络熵值和VMD对应的两个最佳参数。本次寻优共100次(自己可以随意更改寻优次数)。

函数 [u, u_hat, omega] = VMD(signal, alpha, tau, K, DC, init, tol)

% 变分模式分解

% 作者:Konstantin Dragomiretskiy 和 Dominique Zosso

% zosso@math.ucla.edu --- http://www.math.ucla.edu/~zosso

% 初始版本 2013-12-12 (c) 2013

%

% 输入和参数:

% ----------------------

% signal - 要分解的时域信号(1D)

% alpha - 数据保真度约束的平衡参数

% tau - 双上升的时间步长(选择 0 表示噪声松弛)

% K - 要恢复的模式数

% DC - 如果第一个模式被放置并保持在 DC (0-freq)

% init - 0 = 所有 omegas 从 0 开始

% 1 = 所有 omegas 开始均匀分布

% 2 = 所有 omegas 随机初始化

% tol - 收敛标准的公差;通常在 1e-6 左右

%

% 输出:

% ------

% u - 分解模式的集合

% u_hat - 模式的光谱

% omega - 估计模式中心频率

%

% 使用此代码时,请务必引用我们的论文:

% ----------------------------------------------

% K. Dragomiretskiy, D. Zosso, 变分模式分解, IEEE Trans.

信号处理百分比(印刷中)

% 请在此处查看更新参考: 

% http://dx.doi.org/10.1109/TSP.2013.2288675

%------------准备工作

% 输入信号的周期和采样频率

save_T = 长度(信号);

fs = 1/保存_T;

% 通过镜像扩展信号

T = 保存_T;

f_mirror(1:T/2) = 信号(T/2:-1:1);

f_mirror(T/2+1:3*T/2) = 信号;

f_mirror(3*T/2+1:2*T) = 信号(T:-1:T/2+1);

f = f_mirror;

% 时域 0 到 T(镜像信号)

T = 长度(f);

t = (1:T)/T;

% 频谱域离散化

频率 = t-0.5-1/T;

% 最大迭代次数(如果还没有收敛,那么无论如何都不会)

N = 500;

% 对于未来的概括:每个模式的单独 alpha

Alpha = alpha*ones(1,K);

% 构建并居中 f_hat

f_hat = fftshift((fft(f)));

f_hat_plus = f_hat;

f_hat_plus(1:T/2) = 0;

% matrix keeping track of every iterant // 可以为 mem 丢弃

u_hat_plus = zeros(N, length(freqs), K);

% omega_k 的初始化

omega_plus = zeros(N, K);

切换初始化

    情况1

        因为我 = 1:K

            omega_plus(1,i) = (0.5/K)*(i-1);

        结尾

    案例2

        omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K)));

    否则

        omega_plus(1,:) = 0;

结尾

% 如果施加 DC 模式,将其 omega 设置为 0

如果直流

    omega_plus(1,1) = 0;

结尾

% 从空对偶变量开始

lambda_hat = zeros(N, 长度(频率));

% 其他初始化

uDiff = tol+eps;% 更新步骤

n = 1; %循环计数器

sum_uk = 0; % 累加器

% ---------- 迭代更新的主循环

while ( uDiff > tol && n < N ) % 未收敛且低于迭代限制

    

    % 更新第一模式累加器

    k = 1;

    sum_uk = u_hat_plus(n,:,K) + sum_uk - u_hat_plus(n,:,1);

    

    % 通过残差的维纳滤波器更新第一模式的频谱

    u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2 );

    

    % 如果不保持在 0,则更新第一个 omega

    如果~DC

        omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum( abs(u_hat_plus(n+1,T/2+1:T,k)).^2);

    结尾

    

    % 任何其他模式的更新

    对于 k=2:K

        

        % 累加器

        sum_uk = u_hat_plus(n+1,:,k-1) + sum_uk - u_hat_plus(n,:,k);

        

        %模式谱

        u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2 );

        

        %中心频率

        omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum( abs(u_hat_plus(n+1,T/2+1:T,k)).^2);

        

    结尾

    

    % 双重上升

    lambda_hat(n+1,:) = lambda_hat(n,:) + tau*(总和(u_hat_plus(n+1,:,:),3) - f_hat_plus);

    

    %循环计数器

    n = n + 1;

    

    %收敛了吗?

    uDiff = eps;

    对于 i=1:K

        uDiff = uDiff + 1/T*(u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i))*conj((u_hat_plus(n,:,i)-u_hat_plus(n-1,:,我)))';

    结尾

    uDiff = abs(uDiff);

    

结尾

%------ 后处理和清理

% 如果早期收敛则丢弃空白空间

N = 最小值(N,n);

omega = omega_plus(1:N,:);

% 信号重建

u_hat = zeros(T, K);

u_hat((T/2+1):T,:) = squeeze(u_hat_plus(N,(T/2+1):T,:));

u_hat((T/2+1):-1:2,:) = squeeze(conj(u_hat_plus(N,(T/2+1):T,:)));

u_hat(1,:) = conj(u_hat(end,:));

u = zeros(K,length(t));

对于 k = 1:K

    u(k,:)=real(ifft(ifftshift(u_hat(:,k))));

结尾

% 删除镜像部分

u = u(:,T/4+1:3*T/4);

% 重新计算频谱

清除你的帽子;

对于 k = 1:K

    u_hat(:,k)=fftshift(fft(u(k,:)))';

结尾

结尾

⛄ 运行结果

⛄ 参考文采

[1]孟博, 余中舟, 侯战, 等. 基于VMD-SSA-LSSVM的齿轮箱故障检测模型:, CN114964783A[P]. 2022.

[2]逆全波。基于改进VMD的滚动轴承故障无线监测系统[D]. 重庆三峡学院。

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
麻雀算法是一种基于自然界麻雀群体行为的优化算法,用于解决复杂优化问题。在信号处理领域,麻雀算法可以应用于信号去噪问题。而VMD(Variational Mode Decomposition)是一种信号分解方法,可以将信号分解为多个本征模态函数(Intrinsic Mode Functions, IMF),对于非线性和非平稳信号具有很好的适应性。 基于Matlab麻雀算法优化VMD信号去噪的过程可以分为以下几个步骤: 1. 提取信号。首先,将待处理的信号导入Matlab环境中,并对信号进行预处理,例如去直流分量、归一化等。 2. VMD信号分解。使用VMD信号分解为多个IMF,并获得相应的振幅和频率信息。这一步是VMD的核心,可以采用Matlab中现有的VMD工具箱。 3. 首次麻雀群体初始化。根据麻雀算法的特性,首先需要初始化一组麻雀个体,这些个体在参数空间中代表一组解。可以根据信号特点和实际需求来设置个体的初始化范围和初始化方式。 4. 麻雀群体优化。根据麻雀算法的特性,个体会通过通信和协作的方式,逐渐优化解并寻找全局最优解。可以采用遗传算法、粒子群算法等方法进行群体优化,在Matlab中可以使用相关的优化工具箱进行实现。 5. 重构信号。根据优化后的IMF振幅和频率信息,进行信号重构。可以通过幅度加权平均、参数插值等方法来重构信号。 6. 结果评估。对优化后的信号进行性能评估,例如信噪比、失真度等指标,来判断优化效果。 7. 调参和优化。根据评估结果,对麻雀算法的参数进行调整和优化,以获得更好的去噪效果。 基于Matlab麻雀算法优化VMD信号去噪的过程如上所述,通过将优化算法应用于VMD信号分解中,可以有效地去除信号中的噪声,提高信号的质量和可用性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值