【独家首发】Matlab实现秃鹰优化算法BES优化Transformer-LSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

本文提出了一种基于秃鹰优化算法 (BES) 优化 Transformer-LSTM 模型的负荷数据回归预测方法。该方法首先使用 Transformer 模型捕捉负荷数据中的长期依赖关系,并利用 LSTM 模型提取短期特征。随后,利用 BES 算法优化 Transformer-LSTM 模型的参数,以提升模型的预测精度。最后,通过 Matlab 实现该方法,并利用实际电力负荷数据进行实验验证,结果表明该方法能够有效提升负荷数据回归预测的精度。

1. 引言

负荷预测是电力系统运行和调度中一项至关重要的任务。准确的负荷预测可以帮助电力公司优化发电计划、提高系统可靠性、降低运营成本。近年来,随着机器学习技术的快速发展,深度学习模型在负荷预测领域得到广泛应用。

Transformer 和 LSTM 模型都是近年来在时间序列预测中取得成功的深度学习模型。Transformer 模型以其能够有效捕捉长序列数据中的长期依赖关系而闻名,而 LSTM 模型则擅长提取短期特征。然而,单独使用 Transformer 或 LSTM 模型可能无法充分利用负荷数据的复杂特征。

为了解决这一问题,本文提出将 Transformer 和 LSTM 模型结合,并使用 BES 算法优化模型参数,以提升负荷数据回归预测的精度。

2. 模型方法

2.1 Transformer-LSTM 模型

Transformer-LSTM 模型由两部分组成:Transformer 模块和 LSTM 模块。Transformer 模块负责捕捉负荷数据中的长期依赖关系,而 LSTM 模块则负责提取短期特征。

  • Transformer 模块

Transformer 模块使用多头注意力机制来捕捉时间序列数据中的长期依赖关系。具体来说,多头注意力机制通过对输入序列的不同部分进行加权求和,以提取不同时间尺度下的特征信息。

  • LSTM 模块

LSTM 模块使用门控机制来控制信息的流动,以避免梯度消失问题。具体来说,LSTM 模块包含三个门:输入门、遗忘门和输出门。输入门决定哪些信息可以进入 LSTM 单元,遗忘门决定哪些信息可以从 LSTM 单元中删除,输出门决定哪些信息可以从 LSTM 单元中输出。

2.2 秃鹰优化算法 (BES)

秃鹰优化算法 (BES) 是一种新型的群智能优化算法,灵感来自于自然界中秃鹰的觅食行为。BES 算法具有以下特点:

  • 全局搜索能力强: BES 算法通过秃鹰的随机搜索和局部搜索,能够有效地探索搜索空间。

  • 收敛速度快: BES 算法通过秃鹰的群体合作和信息共享,能够快速找到最优解。

  • 易于实现: BES 算法的算法流程简单,易于实现。

2.3 模型优化

本文使用 BES 算法优化 Transformer-LSTM 模型的参数。具体来说,BES 算法将模型的参数视为秃鹰的觅食区域,并通过秃鹰的搜索行为来找到最优参数组合。

3. 实验结果与分析

3.1 数据集

本文使用某电力公司的实际负荷数据进行实验。数据集包含 2019 年 1 月至 2020 年 12 月的电力负荷数据,并分为训练集、验证集和测试集。

3.2 实验设置

  • 模型结构: Transformer-LSTM 模型包含 2 个 Transformer 层和 2 个 LSTM 层。

  • 优化算法: BES 算法。

  • 评价指标: 均方根误差 (RMSE)、平均绝对误差 (MAE) 和平均绝对百分比误差 (MAPE)。

3.3 实验结果

实验结果表明,BES 优化 Transformer-LSTM 模型在负荷数据回归预测方面取得了良好的效果。与其他对比模型相比,该模型具有更低的 RMSE、MAE 和 MAPE,表明其预测精度更高。

3.4 实验分析

实验结果表明,BES 算法能够有效地优化 Transformer-LSTM 模型的参数,从而提升模型的预测精度。此外,实验还发现 Transformer 和 LSTM 模型的结合能够有效捕捉负荷数据的复杂特征。

4. 结论

本文提出了一种基于 BES 优化 Transformer-LSTM 模型的负荷数据回归预测方法。实验结果表明,该方法能够有效提升负荷数据回归预测的精度。该方法为电力公司优化发电计划、提高系统可靠性、降低运营成本提供了新的思路和方法。

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

  • 9
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值