【土木】基于Matlab绘制弹性地基上梁受两个集中力作用时的剪力、弯矩、斜率和挠度曲线

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 本文旨在利用Matlab软件,绘制弹性地基上梁受两个集中力作用时的剪力、弯矩、斜率和挠度曲线。通过建立梁的弹性地基模型,运用数值方法求解梁的挠度方程,并利用Matlab强大的绘图功能,直观地展现梁在不同位置的内力分布及变形特征,为土木工程结构分析与设计提供参考。

关键词: 弹性地基梁;集中力;Matlab;剪力;弯矩;斜率;挠度;数值解法

1. 引言

在土木工程中,梁结构广泛应用于桥梁、建筑物等工程。分析梁的受力变形特性是结构设计和安全评估的关键环节。当梁置于弹性地基上时,地基的反力会影响梁的内力分布和变形,使得分析更为复杂。本文针对弹性地基上梁受两个集中力作用的典型工况,利用Matlab进行数值计算和图形绘制,深入探讨其剪力、弯矩、斜率和挠度特性。

2. 弹性地基梁理论基础

考虑一根长度为L的弹性地基梁,其上作用有两个集中力P1和P2,分别作用于x1和x2处。根据弹性地基梁理论,其挠度y(x)满足下列微分方程:

EI * d⁴y/dx⁴ + ky = q(x)

其中:

  • EI为梁的抗弯刚度,E为弹性模量,I为惯性矩;

  • k为地基反力系数,表示单位长度地基对梁的反力;

  • q(x)为梁上的分布荷载,在本文中,由于是集中力作用,q(x)可用狄拉克δ函数表示。

对于本文所讨论的两个集中力作用的情况,q(x)可以表示为:

q(x) = P1 * δ(x - x1) + P2 * δ(x - x2)

该微分方程的求解较为复杂,通常采用数值方法,例如有限差分法或有限元法。本文选择有限差分法,将梁离散成n个单元,对微分方程进行离散化,从而得到一个线性方程组,求解该方程组即可得到各节点处的挠度值。

3. Matlab数值计算与编程实现

利用有限差分法对上述微分方程进行离散化,可以得到如下线性方程组:

Ay = b

其中,A为系数矩阵,y为挠度向量,b为载荷向量。系数矩阵A的大小为n×n,与梁的离散单元数有关。载荷向量b中包含集中力P1和P2以及地基反力。

利用Matlab编写程序,可以高效地求解该线性方程组,并计算出各节点处的挠度值y。根据挠度值,可以进一步计算剪力、弯矩和斜率:

  • 剪力 V(x) = EI * d³y/dx³

  • 弯矩 M(x) = EI * d²y/dx²

  • 斜率 θ(x) = dy/dx

 


% 绘图
x = linspace(0, L, n);
plot(x, y, 'r-', 'LineWidth', 2);
hold on;
plot(x, V, 'b-', 'LineWidth', 2);
plot(x, M, 'g-', 'LineWidth', 2);
plot(x, theta, 'm-', 'LineWidth', 2);
hold off;
xlabel('x (m)');
ylabel('值');
legend('挠度', '剪力', '弯矩', '斜率');
title('弹性地基上梁受两个集中力作用时的剪力、弯矩、斜率和挠度曲线');
grid on;

4. 结果分析与讨论

通过运行Matlab程序,可以得到弹性地基梁的挠度、剪力、弯矩和斜率曲线。这些曲线清晰地展现了梁在不同位置的内力分布和变形特征。从挠度曲线可以观察到梁的变形情况,集中力作用点附近挠度较大,而远离集中力作用点的地方挠度逐渐减小。剪力曲线反映了梁的内力平衡情况,弯矩曲线则表示了梁的抗弯能力。斜率曲线则描述了梁的转角变化。

通过改变梁的几何参数、材料参数、集中力大小和位置等,可以分析不同参数对梁的受力变形的影响。例如,增加地基反力系数k,可以减少梁的挠度,提高梁的刚度。

5. 结论

本文利用Matlab软件,基于有限差分法,对弹性地基上梁受两个集中力作用的工况进行了数值模拟和图形绘制,获得了梁的挠度、剪力、弯矩和斜率曲线。该方法为土木工程结构分析与设计提供了一种有效的手段,可以直观地展现梁的受力变形特性,有助于工程师更好地理解和设计弹性地基梁结构。未来研究可以考虑更复杂的边界条件、荷载情况以及非线性地基模型,以提高分析的精度和适用性。

⛳️ 运行结果

🔗 参考文献

[1] 胡兴国.用卡氏第二定理计算弹性地基梁[J].昆明理工大学, 2006.

[2] 何威,左树行,白象忠.弹性地基双层梁理论下的混凝土路面力学分析[J].应用力学学报, 2020, 37(1):9.DOI:10.11776/cjam.37.01.D114.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值