【图像去噪】基于非局部与全局高光谱去噪(含PSNR SSIM NoiseLevel )附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

高光谱图像(HSI)因其丰富的光谱信息,在遥感、农业、医学等领域发挥着重要作用。然而,受传感器噪声、大气散射等因素影响,HSI 往往存在着不同程度的噪声污染,严重影响了图像质量和后续分析的准确性。针对这一问题,本文提出了一种基于非局部与全局信息的 HSI 去噪方法。该方法利用非局部相似性原理,在空间域上对像素进行聚类,并结合全局信息来构建去噪模型。实验结果表明,该方法在去除噪声的同时能够有效地保留图像细节,并在 PSNR、SSIM 等评价指标上取得了显著提升。

1. 概述

高光谱图像 (HSI) 是一种包含数百甚至数千个连续光谱波段的数据集,能够提供丰富的关于目标物体的光谱信息。然而,由于传感器噪声、大气散射、光照变化等因素,HSI 通常会受到不同程度的噪声污染。噪声的存在会严重影响图像质量,降低后续分析的准确性。因此,对 HSI 进行有效去噪至关重要。

现有的 HSI 去噪方法主要可以分为以下几类:

  • 基于滤波的方法: 常见的滤波方法包括均值滤波、中值滤波、维纳滤波等。这些方法通常简单易行,但对噪声的抑制能力有限,容易造成图像细节的损失。

  • 基于稀疏表示的方法: 利用信号的稀疏性进行去噪,例如压缩感知、字典学习等方法。这类方法能够有效去除噪声,但需要较高的计算量。

  • 基于深度学习的方法: 利用深度神经网络学习图像的特征,并进行去噪。这类方法能够取得较好的去噪效果,但需要大量的训练数据。

2. 方法介绍

本文提出一种基于非局部与全局信息的 HSI 去噪方法。该方法利用非局部相似性原理,在空间域上对像素进行聚类,并结合全局信息来构建去噪模型。

2.1 非局部相似性原理

非局部相似性原理表明,图像中具有相似纹理或结构的像素往往具有相似的噪声分布。因此,可以通过寻找图像中具有相似结构的像素来进行去噪。具体而言,对每个像素,我们可以找到其在图像中所有具有相似结构的像素,并将这些像素的平均值作为该像素的去噪结果。

2.2 全局信息

除了非局部相似性信息外,还可以利用全局信息来进一步提高去噪效果。全局信息是指图像整体的统计特征,例如图像的平均值、方差、直方图等。通过利用全局信息,可以更准确地估计噪声的分布,从而提高去噪精度。

2.3 去噪模型

基于非局部相似性原理和全局信息,本文构建了以下去噪模型:

𝑥^𝑖=∑𝑗∈𝑁𝑖𝑤𝑖𝑗𝑥𝑗∑𝑗∈𝑁𝑖𝑤𝑖𝑗x^i=∑j∈Niwij∑j∈Niwijxj

其中,𝑥𝑖xi 表示第 𝑖i 个像素的原始值,𝑥^𝑖x^i 表示其去噪后的值,𝑁𝑖Ni 表示与第 𝑖i 个像素具有相似结构的像素集合,𝑤𝑖𝑗wij 表示第 𝑗j 个像素对第 𝑖i 个像素的权重。权重 𝑤𝑖𝑗wij 可以根据像素之间的相似度和全局信息进行计算。

3. 实验结果

为了验证本文方法的有效性,我们在公开数据集上进行了实验。实验结果表明,该方法在去除噪声的同时能够有效地保留图像细节,并在 PSNR、SSIM 等评价指标上取得了显著提升。

3.1 数据集

实验采用公开数据集 AVIRIS Indian Pines 数据集,该数据集包含 220 个光谱波段,每个波段大小为 145 × 145 像素。为了模拟噪声,我们在原始图像上添加了不同程度的加性高斯白噪声。

3.2 评价指标

实验采用以下指标来评价去噪效果:

  • 峰值信噪比 (PSNR)

  • 结构相似度 (SSIM)

  • 噪声水平 (NoiseLevel)

4. 总结

本文提出了一种基于非局部与全局信息的 HSI 去噪方法。该方法利用非局部相似性原理,在空间域上对像素进行聚类,并结合全局信息来构建去噪模型。实验结果表明,该方法能够有效去除噪声,同时保留图像细节,并在 PSNR、SSIM 等评价指标上取得了显著提升。未来,我们将继续探索更有效的高光谱图像去噪方法,以提高图像质量和后续分析的准确性。

⛳️ 运行结果

​ 

🔗 参考文献

 https://arxiv.org/pdf/1812.04243.pdf

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

MATLAB光谱降噪是指在MATLAB环境下对光谱数据进行处理,以除或减少声,从而提高光谱数据的质量和分析精度。光谱降噪在化学分析、医学成像、环境监测等领域有广泛应用。以下是一些常用的光谱降噪方法及其在MATLAB中的实现: ### 1. 移动平均滤波(Moving Average Filter) 移动平均滤波是一种简单且常用的降噪方法,通过计算相邻数据点的平均值来平滑数据。 ```matlab % 原始光谱数据 original_spectrum = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]; % 窗口大小 window_size = 3; % 移动平均滤波 smoothed_spectrum = movmean(original_spectrum, window_size); % 绘图比较 figure; plot(original_spectrum, 'b', 'LineWidth', 1.5); hold on; plot(smoothed_spectrum, 'r', 'LineWidth', 1.5); legend('Original', 'Smoothed'); title('Moving Average Filter'); ``` ### 2. 小波降噪(Wavelet Denoising) 小波降噪利用小波变换将信号分解为不同频率成分,然后通过阈值处理声。 ```matlab % 原始光谱数据 original_spectrum = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] + randn(1, 10) * 2; % 小波降噪 [denoised_spectrum, ~] = wdenoise(original_spectrum, 2, 'Wavelet', 'db4', 'DenoisingMethod', 'Bayes'); % 绘图比较 figure; plot(original_spectrum, 'b', 'LineWidth', 1.5); hold on; plot(denoised_spectrum, 'r', 'LineWidth', 1.5); legend('Original', 'Denoised'); title('Wavelet Denoising'); ``` ### 3. Savitzky-Golay滤波 Savitzky-Golay滤波是一种多项式平滑方法,适用于保持信号形状和宽度的情况下进行降噪。 ```matlab % 原始光谱数据 original_spectrum = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] + randn(1, 10) * 2; % Savitzky-Golay滤波 smoothed_spectrum = sgolayfilt(original_spectrum, 2, 5); % 绘图比较 figure; plot(original_spectrum, 'b', 'LineWidth', 1.5); hold on; plot(smoothed_spectrum, 'r', 'LineWidth', 1.5); legend('Original', 'Smoothed'); title('Savitzky-Golay Filter'); ``` ### 4. 低通滤波器(Low-pass Filter) 低通滤波器允许低频信号通过,阻止高频信号,从而减少声。 ```matlab % 原始光谱数据 original_spectrum = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] + randn(1, 10) * 2; % 设计低通滤波器 cutoff_freq = 0.2; [b, a] = butter(2, cutoff_freq, 'low'); % 应用低通滤波器 filtered_spectrum = filter(b, a, original_spectrum); % 绘图比较 figure; plot(original_spectrum, 'b', 'LineWidth', 1.5); hold on; plot(filtered_spectrum, 'r', 'LineWidth', 1.5); legend('Original', 'Filtered'); title('Low-pass Filter'); ``` 通过以上方法,可以在MATLAB中实现光谱数据的降噪处理。选择合适的降噪方法取决于具体应用场景和数据特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值