基于YOLO的摔倒检测研究
摘要 随着人口老龄化问题的日益严重,摔倒检测在智慧医疗和安全监控领域的重要性日益出现。本文以YOLO(You Only Look Once)目标检测模型为基础,研究了一种实时、高效的摔倒检测方法。通过改进网络结构和训练策略,本文实现了对摔倒行为的精准识别,并在公开数据集和自建场景中进行验证,取得了良好的检测效果。研究成果可应用于养老院、家庭监控及公共安全等场景。
第一章 引言 1.1 研究背景与意义 摔倒事故是老年人意外伤害的主要原因之一,及时检测摔倒行为可以显著降低救助时间,从而挽救生命并减少后续治疗费用。然而,传统基于规则的方法对复杂场景的适应性较差,难以满足实际需求。近年来,随着深度学习和目标检测技术的迅速发展,基于深度学习的摔倒检测方法为解决该问题提供了新思路。
1.2 国内外研究现状 传统方法:主要通过安装传感器(如动情传感器)或分析图像背景变化实现摔倒检测,但成本较高,误报率较高。 深度学习方法:以卷积神经网络(CNN)为核心,通过视频帧中人体的姿态变化实现摔倒检测,具有高效、准确等特点。 YOLO模型的优势:YOLO作为一种单阶段目标检测算法,具备实时性强、检测精度高的特点,很适合摔倒检测任务。
1.3 本文研究内容 基于YOLO模型的摔倒检测方法设计与实现。 改进YOLO模型以提升摔倒行为检测的精度和速度。 在公开数据集与实际场景中对模型进行测试和验证。
第二章 理论基础 2.1 深度学习简介 卷积神经网络(CNN):处理图像数据的核心技术,通过卷积、池化等操作提取特征。 目标检测:在图像中定位并分类目标,包括单阶段和两阶段方法。
2.2 YOLO算法原理 YOLO模型将目标检测任务转化为回应问题,通过单次前向传播完成目标的分类与定位。其关键特点包括: 统一结构:输入图像通过单个网络直接输出检测结果。 实时性强:相比其他方法,YOLO在速度和精度上表现平衡。 版本更新:本文基于YOLOv8模型展开研究。
第三章 摔倒检测方法设计 3.1 数据集准备 公开数据集:采用FDD(Fall Detection Dataset)数据集,包含多种摔倒行为的视频帧。