趣题:七圆定理 一个非常漂亮的结论

  
    给定一个大圆C,里面的六个小圆均内切于圆C。如果这六个小圆中每相邻两个小圆均外切,则连接相对的内切点所成的三条线段共点。
    这是一个非常漂亮的结论。它的证明比较复杂。如果你能独立想出来的话,你就牛B了。大家不妨来挑战一下。























      
    Stanley Rabinowitz于1975给出了一个简单的初等证明。证明的关键在于下面的这个引理:圆周上有A、B、C、D、E、F六点,线段AD、BE、CF共点当且仅当AB·CD·EF=BC·DE·FA。
    引理的证明其实很简单。注意到圆周角∠CBE和∠CFE相等,圆周角∠BCF和∠BEF相等,于是△CPB∽△EPF。类似地,每一组相对的三角形都相似。于是,我们有:

  AB/DE = PA/PE
  CD/FA = PC/PA
  EF/BC = PF/PB
  PC/PE = PB/PF

    等式左边右边分别乘起来,结论也就证到了。
    引理的充分性也是类似的。假设AB·CD·EF=BC·DE·FA但三线不共点,令某两条线段(比如BE和CF)的交点为P,延长AP交圆于X,则有AB·CX·EF=BC·XE·FA,两式一比较我们就发现CX/XE=CD/DE,那只有可能是点X与点D重合。

    下面我们的任务就简单了:假如已知圆C的半径为R,圆P和圆Q外切且分别与圆C内切,半径分别为p和q,我们需要想办法求出线段AB的长度。

  
    延长AM交圆C于D,延长BM交圆C于E。△ACD和△APM都是等腰三角形,且有一个公共角∠A,因此这两个三角形相似,从而推出CD∥MP;同理,CE∥MQ。但PMQ在一条直线上,因此DCE也是一条直线。注意到圆周角∠EBA=∠EDA,且∠BAD=∠BED。于是我们发现△ABM和△EDM也是相似的,即AB/DE=AM/EM=BM/DM。但DE等于2R,于是有:
  AB/2R · AB/2R
= AM/EM · BM/DM
= AM/DM · BM/EM
= AP/CP · BQ/CQ
= p(R - p) · q(R - q)

    现在,把这个结论同时运用到六对外切圆上。假如六个圆与圆C的切点分别为A1、A2、A3、A4、A5、A6,则有:
   (A1A2 · A3A4 · A5A6)^2
=  64R^6 · r1(R-r1)·r2(R-r2)·r3(R-r3)·r4(R-r4)·r5(R-r5)·r6(R-r6)
=  (A2A3 · A4A5 · A6A1)^2
    那么A1A2·A3A4·A5A6=A2A3·A4A5·A6A1,由前面的引理我们就知道了A1A4、A2A5、A3A6三线共点。

来源:http://www.cut-the-knot.org/Curriculum/Geometry/SevenCirclesTheorem.shtml

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值