ChatGPT在解读历史股票收益预测中的外推和错误校准

论文地址:https://arxiv.org/pdf/2408.16707
原本地址:https://mp.weixin.qq.com/s/gL8ZTnpS0xJy7Qc73QEaGw

摘要

本文研究了大型语言模型(LLM)如何解释历史股票回报,并将其预测与众包股票排名平台的估计进行了比较。虽然股票回报表现出短期逆转,但LLM的预测过于外推,对近期表现的权重过高,与人类的预测类似。相对于历史和未来的实现回报,LLM的预测显得乐观。当提示80%置信区间的预测时,LLM的反应比调查证据更好地校准,但对异常值持悲观态度,导致预测分布偏倚。研究结果表明,法学硕士在预测预期回报时表现出普遍的行为偏差,但在衡量风险方面比人类做得更好。

简介

生成性人工智能(AI)在交通、医学和经济等领域展现出巨大潜力,尤其在金融决策中,通过客观分析大量信息提升投资者、分析师和审计师的表现。大型语言模型(LLMs)可能嵌入有害的社会偏见,模仿人类决策时也可能包含认知偏差,如过度外推和过于乐观的预测。本研究评估ChatGPT-4在提供历史回报数据时是否表现出行为偏差,特别是对短期回报的过度外推。

研究发现,投资者对资产未来回报的预期与近期回报呈正相关,且对最近回报的权重最大。ChatGPT在预测股票排名时,表现出与人类相似的依赖历史数据的方式,且其预测结果与人类的预测存在显著相关性。尽管存在短期回报反转的现象,ChatGPT的外推仍然是反生产性的,导致其排名与未来表现呈负相关。

人类在处理收益时对负收益的重视程度高于正收益,负面表现对预期的影响更持久;而GPT-4则更重视近期正收益,且对远期负收益的处理与人类相似。GPT-4在分析价格图表时,仍然依赖于过去的收益数据进行预测。

在对S&P500的市场回报预测中,GPT-4和Claude模型的情绪特征高度相关(0.78),表明相似的人类行为在其响应中体现。LLM的预期收益预测普遍高于历史实际收益,GPT-4的预期收益为2.2%,显著高于历史均值1.4%和实际收益1.15%。GPT-4的80%置信区间预测准确率为76.9%,低于历史10%和90%分位数的简单预测,但其误差程度低于CFO调查结果。GPT-4在低预期和高预期预测中均表现出悲观倾向,低预期显著低于历史10%分位数,高预期也低于历史90%分位数。

LLM的股票回报预测与历史百分位数回归,发现90th百分位数的加载最大,显示出过度乐观的预测倾向。低预测和高预测均显著加载对应百分位数,但高预测对高百分位数的敏感性低,显示出对分布尾部的悲观预期。LLM的预

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值