1.介绍
从一个银行卡中识别其中的银行卡号:
2. 流程
- 读图 , 灰度图 , 二值化
- 使用模板匹配方式对模板,以及输入图像进行轮廓检测(检测外轮廓)。
- 得到当前轮廓的外接矩形。
- 将模板中的外接矩形切割出来。
- 使用矩形的长宽比之间的差异使得信用卡的数字矩形框能够被选择出来。
- 将其进一步细分,与需要识别的信用卡当中的外接矩形resize成同样的大小。
- 使用for循环依次检测。
模板:
二值化:(一般被检测的文字为白色区域)
轮廓检测: refCnts, hierarchy = cv2.findContours(xx.copy() , cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
-
1 因为我们不仅需要轮廓的图像,还需要知道这个轮廓图像对应的标签是啥,所以我们需要计算轮廓,依据每个轮廓所在位置的不同将其进行划分。 这里我们使用OpenCv中的cv2.findContours()函数来进行轮廓检测。函数用法
-
2 cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标, 返回的list中每个元素都是图像中的一个轮廓。
接着,输入图像(银行卡),灰度图,二值化(轮廓检测的输入均为二值图像),预处理(顶帽,SobelX滤波,闭操作*2),轮廓检测(只检测外轮廓),轮廓近似(外接矩形近似,然后根据长宽比滤除不合适的对象。长宽比例不属于数字规范的,滤除掉,剩下的即为包含数字的模块)。
原图:
各种处理:(使轮廓检测的结果更准确)
检测的结果: 按照长宽比过滤到不包含数字的区域,只剩下4个区域