[BZOJ]1912 [APIO2010] 巡逻 树的直径

1912: [Apio2010]patrol 巡逻

Time Limit: 4 Sec   Memory Limit: 64 MB
Submit: 1692   Solved: 881
[ Submit][ Status][ Discuss]

Description

Input

第一行包含两个整数 n, K(1 ≤ K ≤ 2)。接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n)。

Output

输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离。

Sample Input

8 1
1 2
3 1
3 4
5 3
7 5
8 5
5 6

Sample Output

11

HINT

10%的数据中,n ≤ 1000, K = 1; 
30%的数据中,K = 1; 
80%的数据中,每个村庄相邻的村庄数不超过 25; 
90%的数据中,每个村庄相邻的村庄数不超过 150; 
100%的数据中,3 ≤ n ≤ 100,000, 1 ≤ K ≤ 2。

Source

[ Submit][ Status][ Discuss]


HOME Back

  这道题首先K=1的话显然就是树的直径, 答案为2 * (n - 1) - l + 1. 那么K = 2的时候实际上需要先钦定直径是其中的一条, 另一条的话把直径的边权搞负, 再求个直径就好了. 为什么这样是正确的? 首先, 可以知道, 答案中的两条链, 如果有相交部分, 由于相交部分不重算, 则可以看成两条不相交的链.  那么在图上将这两条不相交的链粗略画出来的话, 我们再画上直径, 得知必然又可以看成树的直径和一条和直径有重合的链... 为什么呢?


  (画的超丑...别怪我)比如图中两条红色的就是答案中的两条链(可能不是, 只是打个比方), 蓝色的是直径(同样只是打个比方, 未验证). 我们发现左边那个红色D - G - F肯定不如D - G - B优, 否则就说明了, FH > BH, 那么显然BH就不应该是直径. 所以说我们发现直径肯定是两条链都相交的, 并且这种相交一定可以让这两条链表达成直径和另外一条链. 比如说这个图, 我们已经证明了左边链应该是D-G-B, 右边链是C-E. 那么就可以表达成D - A - E, B - A - C(重复的相消就是原来的了).

  那么再钦定原来的直径后, 再把重复的改成-1来使重复相消, 再求一次直径就可以了.

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int n, K, num, mx, ans, heart;
int h[maxn], pre1[maxn], pre2[maxn];
inline const int read() {
	register int x = 0;
	register char ch = getchar();
	while (ch < '0' || ch > '9') ch = getchar();
	while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
	return x;
}
struct edge {
	int v, nxt, w;
}e[maxn << 1];
inline void add(int u, int v) {
	e[++ num].v = v, e[num].w = 1, e[num].nxt = h[u], h[u] = num;
	e[++ num].v = u, e[num].w = 1, e[num].nxt = h[v], h[v] = num;
}
int dfs(int u, int fa) {
	int m1 = 0, m2 = 0;
	for (int i = h[u]; i; i = e[i].nxt) {
		int v = e[i].v;
		if (v == fa) continue;
		int x = dfs(v, u) + e[i].w;
		if (x > m1) m2 = m1, m1 = x, pre2[u] = pre1[u], pre1[u] = i;
		else if (x > m2) m2 = x, pre2[u] = i;
	}
	if (m1 + m2 > mx) mx = m1 + m2, heart = u;
	return m1;
}
int main() {
	n = read(), K = read();
	for (int i = 1, u, v; i < n; ++ i)
		u = read(), v = read(), add(u, v);
	dfs(1, 0);
	ans = (n - 1) * 2 - mx + 1;
	if (K == 1) {
		printf("%d\n", ans);
		return 0;
	}
	for (int i = pre1[heart]; i; i = pre1[e[i].v]) e[i].w = -1;
	for (int i = pre2[heart]; i; i = pre1[e[i].v]) e[i].w = -1;
	mx = 0, dfs(1, 0);
	ans -= mx - 1;
	printf("%d\n", ans);
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值