【BZOJ1124】Mafia(POI2008)-环套树DP

测试地址:Mafia
做法: 本题需要用到环套树DP。
按照题目构图,很显然是我们很熟悉的环套树森林。接下来我们进行分析,最后活下来一些什么人是合法的呢?观察发现,一个人的目标如果是自己那就必死,而没有被作为目标的人一定存活,还有一个特别重要的性质:一个人 i i i和他的目标 a i a_i ai到最后不可能都存活。在满足这些条件的情况下,我们一定可以构造出一个顺序使得最后存活特定的人。于是问题就非常好分析了。
首先来看怎么样死亡最多,也就是存活最少。由于上面我们知道,没有被作为目标的人一定存活,那么其他的人是一定都会死吗?不一定,因为我们再次发现,一个连通块内至少会有一个人存活。因此我们对所有没被作为目标的人打个标记,在进行连通块的搜索的时候,如果当前连通块内不存在这样的人(事实上,这种情况只有可能是一个环),那么就会多出一个人存活。当然,如果这个环内只有一个人,那么因为这个人目标是自己,所以他必死,特判一下即可。这样我们就能 O ( n ) O(n) O(n)计算出这个答案了。
然后我们来看怎么样死亡最少,也就是存活最多。注意到上面“一个人和他的目标不能都存活”这个性质,在图中就表现为,一条边的两个端点不可能都存活,于是我们要找的就是在这种状态下,最多能选出多少个人存活,这显然就是一个环套树上的最大独立集问题,只不过还要规定所有叶子节点都必须被选,用边界条件稍微修改的环套树DP就能 O ( n ) O(n) O(n)解决。当然,还要特判环套树中的环中只有一个人的情况,这样的话这个人是必死的。把每个连通块的答案加起来,就是最多的存活人数了,最少的死亡人数也随之得出了。
于是经过上面的讨论,我们解决了这个问题。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
int n,a[1000010],in[1000010],q[1000010],h,t,ans1,ans2;
int f[1000010][2]={0},looplen,loop[1000010];
int loopf[2][2];
bool totflag,flag[1000010]={0},vis[1000010]={0};

void find_loop(int i)
{
	looplen=1;
	totflag=flag[i];
	loop[1]=i;
	vis[i]=1;
	f[i][1]++;
	while(a[loop[looplen]]!=loop[1])
	{
		++looplen;
		loop[looplen]=a[loop[looplen-1]];
		totflag|=flag[loop[looplen]];
		vis[loop[looplen]]=1;
		f[loop[looplen]][1]++;
	}
}

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		in[a[i]]++;
	}
	
	h=1,t=0;
	ans2=n;
	for(int i=1;i<=n;i++)
		if (!in[i])
		{
			q[++t]=i;
			ans2--;
		}
	while(h<=t)
	{
		int v=q[h++];
		in[a[v]]--;
		f[v][1]++;
		f[a[v]][0]+=max(f[v][0],f[v][1]);
		f[a[v]][1]+=f[v][0];
		if (!in[a[v]]) q[++t]=a[v];
		flag[a[v]]=1;
	}
	
	ans1=n;
	for(int i=1;i<=n;i++)
		if (in[i]&&!vis[i])
		{
			find_loop(i);
			if (!totflag&&looplen>1) ans2--;
			if (looplen==1) {ans1-=f[i][0];continue;}
			if (looplen==2)
			{
				int x=i,y=a[i],mx=0;
				mx=max(mx,f[x][0]+f[y][0]);
				mx=max(mx,f[x][0]+f[y][1]);
				mx=max(mx,f[x][1]+f[y][0]);
				ans1-=mx;
				continue;
			}
			if (looplen==3)
			{
				int x=i,y=a[i],z=a[a[i]],mx=0;
				mx=max(mx,f[x][0]+f[y][0]+f[z][0]);
				mx=max(mx,f[x][0]+f[y][0]+f[z][1]);
				mx=max(mx,f[x][0]+f[y][1]+f[z][0]);
				mx=max(mx,f[x][1]+f[y][0]+f[z][0]);
				ans1-=mx;
				continue;
			}
			int mx=0,now=1,past=0;
			loopf[past][0]=loopf[past][1]=0;
			for(int j=2;j<=looplen;j++)
			{
				loopf[now][0]=max(loopf[past][0],loopf[past][1])+f[loop[j]][0];
				loopf[now][1]=loopf[past][0]+f[loop[j]][1];
				swap(now,past);
			}
			mx=max(mx,max(loopf[past][0],loopf[past][1])+f[loop[1]][0]);
			loopf[past][0]=loopf[past][1]=0;
			for(int j=3;j<=looplen-1;j++)
			{
				loopf[now][0]=max(loopf[past][0],loopf[past][1])+f[loop[j]][0];
				loopf[now][1]=loopf[past][0]+f[loop[j]][1];
				swap(now,past);
			}
			mx=max(mx,max(loopf[past][0],loopf[past][1])+f[loop[1]][1]+f[loop[2]][0]+f[loop[looplen]][0]);
			ans1-=mx;
		}
	
	printf("%d %d",ans1,ans2);
	
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值